• Title/Summary/Keyword: Flow-through Cell

Search Result 642, Processing Time 0.038 seconds

A Gap Phase-Specific Inhibitor of the Mammalian Cell Cycle from Streptomyces sp. ZF10 (Streptomyces sp. ZF-10이 생산하는 세포주기 저해제)

  • ;;Hiroyuki Osada
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.495-498
    • /
    • 1994
  • Genistein, a inhibitor of the progression of G$_{1}$ and G$_{2}$ phase of the mammalian cell cycle, was discovered through a unique screening system, in which effects of microbial metabolites on the cycle progression of the cultured mouse mammalian carcinoma cell were monitored by flow cytometry. The inhibitor was extracted from the fermentation broth of Streptomyces sp. ZF10 with ethyl acetate, and purified by silica gel column chromatography and HPLC.

  • PDF

A Computational Study of the Fuel-Cell Ejector System (연료전지 이젝터 시스템에 관한 수치해석적 연구)

  • Lee, Jun-Hee;Lee, Hae-Dong;NamKoung, Hyuck-Joon;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3191-3196
    • /
    • 2007
  • The present study addresses a method to operate a fuel-cell system effectively using a recirculation ejector which recycles wasted hydrogen gas. Configuration of a recirculation ejector is changed to investigate the flow behavior through it under varying operating conditions, and how such conditions affect the fuel-cell hydrogen cycle. The numerical simulations are based on a fully implicit finite volume scheme of the axisymmetric, compressible, Reynolds-Averaged, Navier-Stokes equations for hydrogen gas, and are compared with available experimental data for validation. The results show that a hydrogen recirculation ratio is effectively controlled by a configurational alteration within the operational region in which the recirculation passage doesn't plugged by a sonic line.

  • PDF

Viscum Album Var Hot Water Extract Mediates Anti-cancer Effects through G1 Phase Cell Cycle Arrest in SK-Hep1 Human Hepatocarcinoma cells

  • Cruz, Joseph Flores dela;Kim, Yeon Soo;Lumbera, Wenchie Marie Lara;Hwang, Seong Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6417-6421
    • /
    • 2015
  • Viscum album var (VAV) also known as mistletoe, has long been categorized as a traditional herbal medicine in Asia. In addition to its immunomodulating activities, mistletoe has also been used in the treatment of chronic hepatic disorders in China and Korea. There are numerous reports showing that VAV possesses anti-cancer effects, however influence on human hepatocarcinoma has never been elucidated. In the present study, hot water extracts of VAV was evaluated for its potential anti-cancer effect in vitro. SK-Hep1 cells were treated with VAV (50-400ug/ml) for both 24 and 48 hours then cell viability was measured by cell counting kit-8 (CCK-8). Flow cytometry analysis was used to measure the proportion of SK-Hep1 in the different stages of cell cycle. RT-PCR and Western blot analysis were conducted to measure expression of cell cycle arrest related genes and proteins respectively. VAV dose dependently inhibited the proliferation of SK-Hep1 cells without any cytotoxicity with normal Chang liver cell (CCL-13). Flow cytometry analysis showed that VAV extract inhibited the cell cycle of SK-Hep1 cells via G1 phase arrest. RT-PCR and Western blot analysis both revealed that cyclin dependent kinase 2 (Cdk2) and cyclin D1 gene expression were significantly down regulated while p21 was upregulated dose dependently by VAV treatment. Combined down regulation of Cdk2, Cyclin D1 and up regulation of p21 can result in cell death. These results indicate that VAV showed evidence of anti-cancer activity through G1 phase cell cycle arrest in SK-Hep1 cells.

A COMPUTATIONAL MODEL FOR OSMOSIS PHENOMENA OF CELLS THROUGH SEMI-PERMEABLE MEMBRANES

  • Kim, Im-Bunm;Ha, Tae-Young;Sheen, Dong-Woo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.2
    • /
    • pp.123-140
    • /
    • 2009
  • The effect of a solute concentration difference on the osmotic transport of water through the semi-permeable membrane of a simple cell model is investigated. So far, most studies on osmotic phenomena are described by simple diffusion-type equations ignoring all fluid motion or described by Stokes flow. In our work, as the governing equations, we consider the coupled full Navier-Stokes equations which describe the fluid motion and the full transport equation that takes into account of convection and diffusion effects. A two dimensional finite difference model has been developed to simulate the velocity field, concentration field, and semi-permeable membrane movement. It is shown that the cell swells to regions of lower solute concentration due to the uneven water flux through the semi-permeable membrane. The simulation is applied on a red blood cell geometry and the relevant results are presented.

  • PDF

Vehicle Running Characteristics for Interrupted Traffic Flow by Using Cellular Automata (CA 모델을 활용한 단속류에서의 차량주행 특성)

  • Jung, Kwangsu;Do, Myungsik;Lee, Jongdal;Lee, Yongdoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.31-39
    • /
    • 2012
  • This study aims to suggest a methodology of localizing and calibrating parameters, such as acceleration, deceleration, and lane changing which are the basis of car following model in interrupted traffic flow to overcome the limitation of origin and destination based transportation simulation and to verify the application of activity-based model for use in Korean roadway condition in a large scale area or a city. Especially, we figured out that a proper cell size reflecting Korean traffic conditions is 1.0m rather than 7.5m which is default size and a methodology of tracking vehicle behavior characteristics through tracking vehicle ID is suggested on this study. In addition, vehicle running characteristics in real interrupted traffic flow is analyzed through subdividing vehicle types and updating vehicle type ratio. For verification of suggested model, some portion of Dalgubyul-ro in the Daegu city is tested, and the possibility of realization of interrupted traffic flow in simulation is studied.

Aspergillus fumigatus-derived demethoxyfumitremorgin C inhibits proliferation of PC3 human prostate cancer cells through p53/p21-dependent G1 arrest and apoptosis induction

  • Kim, Young-Sang;Park, Sun Joo
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Human prostate cancer is the second most frequently diagnosed cancer worldwide, and its incidence rate continues to increase. Advanced prostate cancer is more difficult to treat than early forms due to its chemotherapy resistance. There is need for more effective agents that can inhibit the progression of advanced prostate cancer. Demethoxyfumitremorgin C (DMFTC) was isolated from the fermentation extract of the marine fungus Aspergillus fumigatus. Antiproliferative activity of DMFTC against human prostate cancer PC3 cells was examined through cell cycle analysis by flow cytometry, the fluorescent nuclear imaging analysis with propidium iodide (PI), and proteins expression related to cell cycle arrest and apoptosis were investigated via Western blotting. DMFTC inhibited PC3 cells growth through G1 phase cell cycle arrest and apoptosis induction. It activated the tumor suppressor p53 and the Cdk inhibitor p21, which regulate the cell progression into the G1 phase. Additionally, PI-positive late apoptotic non-viable cells were increased and the expression levels of the G1-positive downstream regulators cyclin D, cyclin E, Cdk2, and Cdk4 were decreased by DMFTC treatment. These results suggest that DMFTC induces G1 arrest and apoptosis induction through regulation of p53/p21-dependent cyclin-Cdk complexes, and it may be a useful therapeutic agent for the treatment of human advanced prostate cancer.

Prediction of Bypass Flow Rate through Gas Diffusion Layer in PEMFC with Serpentine Flow Channels (사행 유로를 갖는 고분자 전해질 연료전지의 기체확산층 내부에서의 우회 유동 예측)

  • Jeon, Se-Gye;Kim, Kuoung-Youn
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.293-299
    • /
    • 2012
  • The serpentine flow channel is widely used in polymer electrolyte membrane fuel cells (PEMFCs) to prevent flooding phenomena because it effectively removes liquid water in the flow channel. The pressure drop between inlet and outlet increases as compared with straight channels due to minor losses associated with the corners of the turning configurations. This results in a strong pressure gradient between adjacent channels in specific regions, where some amount of reactant gas can be delivered to catalyst layers by convection through a gas diffusion layer (GDL). The enhancement of the convective flow in the GDL, so-called bypass flow, affects fuel cell performance since the bypass flow influences the reactant transport and thus its concentration over the active area. In the present paper, for the bipolar plate design, a simple analytic model has been proposed to predict the bypass flow in the serpentine type flow channels and validated with three-dimensional numerical simulation results.

Experimental Study on the Performance of a Turbopump Inducer

  • Hong, Soon-Sam;Kim, Jin-Sun;Park, Chang-Ho;Kim, Jinhan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.240-244
    • /
    • 2004
  • Characteristics of steady and unsteady cavitation in a turbopump inducer were investigated in this paper. To see the effect of tip clearance on the inducer performance, three cases of tip clearance were tested. The helical inducer, which has two blades with inlet tip blade angle of 7.8 degree and tip solidity of 2.7, was tested in the water. In the non-cavitating condition, the inducer head decreased with increase in the tip clearance. Rotating cavitation and cavitation surge were observed through unsteady pressure measurements at the inducer inlet. The cell number and propagation speed of the rotating cavitation were determined through cross-correlation analysis. During the rotating cavitation one cell rotated at the same rotational speed as that of the inducer rotation and the cavitation surge did not rotate. The critical cavitation number increased with increase in the tip clearance at the same flow rate, but the change of critical cavitation number was small at the nominal flow rate.

  • PDF

A Study on the Architectural Design Plans Using BIPV (BIPV를 활용한 건축물 디자인 계획에 관한 연구)

  • Juen, Guen-Sik;Ryu, Soo-Hoon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.3
    • /
    • pp.5-13
    • /
    • 2012
  • In this study, features and design effects of PV(Photovoltaic) modules were classified to help the installation of BIPV(Building Integrated Photovoltaic) In addition, through domestic and international trends and cases survey, installation method was organized and applicable range of efficiency and design from First-generation solar cells to the third-generation solar cell was classified. Frist, Crystalline Solar cell module of first-generation is appropriate for the wall type, roof, louver, shading and etc. It has superiority of technology and price stability and can be achieved by a variety of aesthetic effects. Second, Dye-Sensitized Solar Cell of Thin Film solar cell can express a variety of colors, adjust light transmittance and maximize the aesthetic splendor. It is appropriate for the wall type, window type, curtain wall type and etc. Also, see-through type solar cell can provide comforts cause of free flow of light. And it is advantageous from economic due to adjust the indoor temperature. It is appropriate for the atrium type, curtain wall type, window type and etc.

Pressure Drop Analysis on Filling of Hydrogen Fuel Cell Vehicles (수소연료전지 차량 충전에서의 압력강하 분석)

  • Hyo Min Seo;Byung Heung Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.38-47
    • /
    • 2023
  • In the hydrogen filling process, hydrogen flows by the pressure difference between the supply pressure at a filling station and a storage tank in the vehicle, and the flow rate depends on the pressure difference. Therefore, it is essential to consider the pressure drop of hydrogen occurring during the filling process, and the efficiency of the hydrogen filling process can be improved through its analysis. In this study, the pressure drop was analyzed for a hose, a nozzle/receptacle coupling, a pipe, and a valve in a filling line. The pressure drops through hose and pipe, the nozzle,receptacle coupling, and the valve were calculated by using a equation for a straight conduit, a flow nozzle formula, and a gas flow respectively. In addition, as a result of comprehensive analysis of the pressure drop effect occurring in each component, it was found that the factor that has the greatest influence on the pressure drop in the entire filling line is the pressure drop through the valve. This study can be used to develop a model of the hydrogen filling process by analyzing hydrogen flow including hydrogen filling in the future.