• Title/Summary/Keyword: Flow velocity measurement

Search Result 748, Processing Time 0.024 seconds

Analysis on the Uncertainty Accompanied by PlV Velocity Measurements (PIV속도계측에 수반하는 UNCERTAINTY해석)

  • 이영호;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.71-74
    • /
    • 1991
  • Uncertainty analyses accompanied by the measurement of the velocity vectors in 3-D cavity flows are carried out. Twenty-one elemental errors are esimated or calculated according to the ANIS/ASME uncertainty analysis manual. Error components associater with the PIV(Particle Imaging Velocimetry) are reasonably small and the errors caused by the flow characteristics are fairly large, which confirm the reliability of the PIV measurement and also give good information to the planning phase of the experiment by discriminating the most critical parameter. The present study reveals that vector length expressed by pixels is the most influential. Calculated relative uncertainty for the all experimental conditions is ranging about 5-10% in terms of the representative velocity 0.5U. U is here the belt velocity on the cavity apparatus. Approximating equations to show the relative rss uncertainties are given and graphic representations are followed for the easier understanding of the uncertainty, existing in the velocity profiles of the cavity flow.

  • PDF

Flow Analysis of Bubble and Liquid Phase by Vertical Upward Gas Injection (수직상향 기체 주입에 따른 기포 및 액상의 유동분석)

  • 서동표;오율권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.727-732
    • /
    • 2003
  • In the present study, a PIV measurement and image processing technique were applied in order to investigate the flow characteristics in the gas injected liquid bath. The circulation of liquid was induced by upward bubble flow. Due to the centrifugal force, the flow was well developed near both wall sides than in the center of a bath. The vortex flow irregularly repeated generation and disappearance which helped to accelerate the mixing process. The bubble rise velocity in the bottom region was relatively lower than in the upper region because the energy generated by bubbles' behavior in the region near the nozzle was almost converted into kinetic energy But bubble rise velocity increases with the increase of the axial distance since kinetic energy of rising bubbles is added to buoyancy force. In conclusion, the flow increased bubble rise velocity and the flow of the bottom region became more active.

Experimental Investigation of Two-dimensionality of Flow around the Vertical Fence Submerged in a Turbulent Boundary Layer (난류 경계층에 잠긴 수직벽 주위 유동의 2차원성 연구)

  • Cha, Jae-Eun;Kim, Hyoung-Woo;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • An experimental investigation of the flow around a vertical fence was carried out using a PIV velocity field measurement technique. The vertical fence was embedded in a turbulent boundary layer. The instantaneous velocity fields measured at cross-sectional planes reveal complex longitudinal vortices that vary in size and strength, developing from the upstream location. In the instantaneous vorticity and velocity field data, the shear flow separated from the fence top is highly turbulent and shows unsteady flow characteristics. The topography of the ensemble averaged velocity fields, especially the separation bubble formed behind the fence, shows that the spatial distributions of streamwise velocity (U) and vertical (V) are symmetric, the spanwise velocity (W) is skew-symmetric with respect to the central xy-plane(z=0).

Velocity Field Measurement of Flow Around an Axial Fan Using a Phase Averaged 2-Frame PTV Technique (위상평균 PTV 기법을 이용한 축류 홴 주위 유동의 속도장 측정 연구)

  • Choi, Jay-Ho;Kim, Hyoung-Bum;Lee, Sang-Joon;Lee, In-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.114-123
    • /
    • 2000
  • The flow structure around a rotating axial-fan was experimentally investigated using a phase averaging velocity field measurement technique. The fan blades were divided into 4 different phases, for which 500 velocity fields were acquired for each phase angle with a 2-frame PTV system. Velocity field measurements were also carried out at two planes parallel to the axis of rotation, with offsets toward the radial direction of the fan. For accurate synchronization of the PTV system with the phase of the axial fan, two synchronization circuits were employed with a photo-detector attached to the rotating shaft. The phase averaged velocity fields show periodic variations with respect to the blade phase. The periodic formation of vortices at the blade tip is also observed in vorticity contour plots. Locations of local maximum turbulence intensities in the axial and radial directions are found to be located in an alternating pattern. These experimental results can be used to validate numerical calculations and to understand the flow characteristics of an axial fan.

A Study on the Wet Type Ultrasonic Flow-meter System Development (습식방식의 초음파 유량계 시스템 개발에 관한 연구)

  • Lee Eung-Suk;Kwon Oh-Hoon;Rho Myung-Hwan;Lee Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1638-1644
    • /
    • 2005
  • This paper suggests fur the study on a fluid velocity measuring system using ultrasonic transducer. In general, the time difference method to measure the distance between transducers has been known. In this paper, the practical technology for manufacturing ultrasonic flow meter system is studied using the time difference method. The ultrasonic transducer was designed and manufactured. The transmission and receiving algorithm for ultrasonic signal was studied. The ultrasonic flow measuring system was experimented in laboratory using a water reservoir for verifying the distance measuring accuracy. Finally, it was tested in flow calibration laboratory for the velocity measuring performance. The system, designed in this study, showed 0.3 mm resolution in distance measurement. For precise flow measurement, a high speed triggering algorithm is required for ultrasonic signal receiving.

A Study on the Turbulent Characteristics of Rushton Turbine Mixer by Simultaneous Measurement of Velocity and Concentration field with Stereo-PIV/PLIF Technique (Stereo-PIV/LIF의 속도장과 농도장 동시측정 기법을 이용한 러쉬톤 교반기내 난류특성에 관한 연구)

  • Min, Young-Uk;Kim, Yun-Gi;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.365-370
    • /
    • 2004
  • Simultaneous measurement with PLIF(Planar Laser-Induced Fluorescence) and Stereo-PIV(Stereo Particle Image Velocimetry) was performed to investigate the structural characteristics of flow field in Rushton Turbine Mixer. Instantaneous 3D velocity fields are measured by two 2K${\times}$2K CCD cameras focused on an object plane with the angular displacement methods while the concentration fields are obtained through the measurement of the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. Finally, the spatial structures of turbulent flow around Rushton turbine were identified by the calculation of synchronized data of the velocity field and concentration field.

Stereoscopic micro-PIV measurements of jet flow (미세제트 유동의 Stereoscopic micro-PIV측정)

  • Yu, Cheong-Hwan;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.43-48
    • /
    • 2007
  • Micro-PIV(particle image velocimetry) has been widely used to measure the velocity of micro flow. Although this micro-PIV method can give accurate 2D instantaneous velocity information of mea-surement plane, it cannot resolve the out of plane component of velocity vectors. Lots of the micro fluidic devices generate three-dimensional flow and 3D measurement of velocity is useful to understand the physics of micro flow phenomena. In this study, we constructed stereoscopic micro-PIV(SMPIV) system and applied this method to the impinging micro jet flow. The results show that this method can produce accu-rate 3D reconstruction of micro jet flow.

Review of Experimental Studies on Swirling Flow in the Circular Tube using PIV Technique

  • Chang, Tae-Hyun;Nah, Do-Baek;Kim, Sang-Woo
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • The study of swirling flow is of technical and scientific interest because it has an internal recirculation field, and its tangential velocity is related to the curvature of streamline. The fluid flow for tubes and elbow of heat exchangers has been studied largely through experiments and numerical methods, but studies about swirling flow have been insufficient. Using the particle image velocimetry(PTV) method, this study found the time averaged velocity distribution with swirl and without swirl along longitude sections and the results appear to be physically reasonable. In addition, streamwise mean velocity distribution was compares with that of other. Furthermore, other experimental investigation was performed to study the characteristics of turbulent water flow in a horizontal circular tube by using liquid crystal. 2D PIV technique is employed for velocity measurement and liquid crystal is used for heat transfer experiments in water. Temperature visualization was made quantitatively by calibrating the colour of the liquid crystal versus temperature using various approaches.

Dynamic PIV Measurement of Swirl Flow in a PC Fan

  • ARAMAKI Shinichiro;HAYAMI Hiroshi
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.41-45
    • /
    • 2004
  • The dynamic particle image velocimetry (PIV) is consisted of a high frequency pulse laser, high speed cameras and a timing controller. The three velocity components of flow downstream of an axial flow fan for PC cooling system are measured using the dynamic PIV system. An Axial flow fan has seven blades of 72 mm in diameter. The rotating speed is 1800 rpm. The downstream flow is visualized by smoke particles of about $0.3-1\;{\mu}m$ in diameter. The three-dimensional instantaneous velocity fields are measured at three downstream planes. The swirl velocity component was diffused downstream and the change in time-mean vorticity distribution downstream was also discussed. The spatio-temporal change in axial velocity component with the blades passing is recognized by the instantaneous vector maps. And the dynamic behavior of vorticity moving with the rotating blades is discussed using the unsteady vorticity maps.

  • PDF