• Title/Summary/Keyword: Flow validation

Search Result 809, Processing Time 0.029 seconds

The Effects of Enterprise Value and Corporate Tax on Credit Evaluation Based on the Corporate Financial Ratio Analysis (기업 재무비율 분석을 토대로 기업가치 및 법인세가 신용평가에 미치는 영향)

  • Yoo, Joon-soo
    • Journal of Venture Innovation
    • /
    • v.2 no.2
    • /
    • pp.95-115
    • /
    • 2019
  • In the context of today's business environment, not only is the nation or company's credit rating considered very important in our recent society, but it is also becoming important in international transactions. Likewise, at this point of time when the importance and reliability of credit evaluation are becoming important at home and abroad, this study analyzes financial ratios related to corporate profitability, safety, activity, financial growth, and profit growth to study the impact of financial indicators on enterprise value and corporate taxes on credit evaluation. To proceed with this, the financial ratio of 465 companies of KOSPI securities listed in 2017 was calculated and the impact of enterprise value and corporate taxes on credit evaluation was analyzed. Especially, this further study tried to derive a reliable and consistent conclusion by analyzing the financial data of KOSPI securities listed companies for eight years from 2011, which is the first year of K-IFRS introduction, to 2018. Research has shown that the significance levels among variables that show the profitability, safety, activity, financial growth, and profit growth of each financial ratio were significant at the 99% level, except for the profit growth. Validation of the research hypothesis found that while the profitability of KOSPI-listed companies significantly affects corporate value and income tax, indicators such as safety ratio and growth ratio do not significantly affect corporate value and income tax. Activity ratio resulted in significant effects on the value of enterprise value but not significant impacts on income taxes. In addition, it was found that the enterprise value has a significant effect on the company's credit and corporate income taxes, and that corporate income taxes also have a significant effect on the corporate credit evaluation, and this also shows that there is a mediating function of corporate tax. And as a result of further study, when looking at the financial ratio for eight years from 2011 to 2018, it was found that two variables, KARA and LTAX, are significant at a 1% significant level to KISC, whereas LEVE variables is not significant to KISC. The limitation of this study is that credit rating score and financial score cannot be said to be reliable indicators that investors in the capital market can normally obtain, compared to ranking criteria for corporate bonds or corporate bills directly related to capital procurement costs of enterprise. Above all, it is necessary to develop credit rating score and financial score reflecting financial indicators such as business cash flow or net assets market value and non-financial indicators such as industry growth potential or production efficiency.

Application of The Semi-Distributed Hydrological Model(TOPMODEL) for Prediction of Discharge at the Deciduous and Coniferous Forest Catchments in Gwangneung, Gyeonggi-do, Republic of Korea (경기도(京畿道) 광릉(光陵)의 활엽수림(闊葉樹林)과 침엽수림(針葉樹林) 유역(流域)의 유출량(流出量) 산정(算定)을 위한 준분포형(準分布型) 수문모형(水文模型)(TOPMODEL)의 적용(適用))

  • Kim, Kyongha;Jeong, Yongho;Park, Jaehyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.197-209
    • /
    • 2001
  • TOPMODEL, semi-distributed hydrological model, is frequently applied to predict the amount of discharge, main flow pathways and water quality in a forested catchment, especially in a spatial dimension. TOPMODEL is a kind of conceptual model, not physical one. The main concept of TOPMODEL is constituted by the topographic index and soil transmissivity. Two components can be used for predicting the surface and subsurface contributing area. This study is conducted for the validation of applicability of TOPMODEL at small forested catchments in Korea. The experimental area is located at Gwangneung forest operated by Korea Forest Research Institute, Gyeonggi-do near Seoul metropolitan. Two study catchments in this area have been working since 1979 ; one is the natural mature deciduous forest(22.0 ha) about 80 years old and the other is the planted young coniferous forest(13.6 ha) about 22 years old. The data collected during the two events in July 1995 and June 2000 at the mature deciduous forest and the three events in July 1995 and 1999, August 2000 at the young coniferous forest were used as the observed data set, respectively. The topographic index was calculated using $10m{\times}10m$ resolution raster digital elevation map(DEM). The distribution of the topographic index ranged from 2.6 to 11.1 at the deciduous and 2.7 to 16.0 at the coniferous catchment. The result of the optimization using the forecasting efficiency as the objective function showed that the model parameter, m and the mean catchment value of surface saturated transmissivity, $lnT_0$ had a high sensitivity. The values of the optimized parameters for m and InT_0 were 0.034 and 0.038; 8.672 and 9.475 at the deciduous and 0.031, 0.032 and 0.033; 5.969, 7.129 and 7.575 at the coniferous catchment, respectively. The forecasting efficiencies resulted from the simulation using the optimized parameter were comparatively high ; 0.958 and 0.909 at the deciduous and 0.825, 0.922 and 0.961 at the coniferous catchment. The observed and simulated hyeto-hydrograph shoed that the time of lag to peak coincided well. Though the total runoff and peakflow of some events showed a discrepancy between the observed and simulated output, TOPMODEL could overall predict a hydrologic output at the estimation error less than 10 %. Therefore, TOPMODEL is useful tool for the prediction of runoff at an ungaged forested catchment in Korea.

  • PDF

Bankruptcy prediction using an improved bagging ensemble (개선된 배깅 앙상블을 활용한 기업부도예측)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.121-139
    • /
    • 2014
  • Predicting corporate failure has been an important topic in accounting and finance. The costs associated with bankruptcy are high, so the accuracy of bankruptcy prediction is greatly important for financial institutions. Lots of researchers have dealt with the topic associated with bankruptcy prediction in the past three decades. The current research attempts to use ensemble models for improving the performance of bankruptcy prediction. Ensemble classification is to combine individually trained classifiers in order to gain more accurate prediction than individual models. Ensemble techniques are shown to be very useful for improving the generalization ability of the classifier. Bagging is the most commonly used methods for constructing ensemble classifiers. In bagging, the different training data subsets are randomly drawn with replacement from the original training dataset. Base classifiers are trained on the different bootstrap samples. Instance selection is to select critical instances while deleting and removing irrelevant and harmful instances from the original set. Instance selection and bagging are quite well known in data mining. However, few studies have dealt with the integration of instance selection and bagging. This study proposes an improved bagging ensemble based on instance selection using genetic algorithms (GA) for improving the performance of SVM. GA is an efficient optimization procedure based on the theory of natural selection and evolution. GA uses the idea of survival of the fittest by progressively accepting better solutions to the problems. GA searches by maintaining a population of solutions from which better solutions are created rather than making incremental changes to a single solution to the problem. The initial solution population is generated randomly and evolves into the next generation by genetic operators such as selection, crossover and mutation. The solutions coded by strings are evaluated by the fitness function. The proposed model consists of two phases: GA based Instance Selection and Instance based Bagging. In the first phase, GA is used to select optimal instance subset that is used as input data of bagging model. In this study, the chromosome is encoded as a form of binary string for the instance subset. In this phase, the population size was set to 100 while maximum number of generations was set to 150. We set the crossover rate and mutation rate to 0.7 and 0.1 respectively. We used the prediction accuracy of model as the fitness function of GA. SVM model is trained on training data set using the selected instance subset. The prediction accuracy of SVM model over test data set is used as fitness value in order to avoid overfitting. In the second phase, we used the optimal instance subset selected in the first phase as input data of bagging model. We used SVM model as base classifier for bagging ensemble. The majority voting scheme was used as a combining method in this study. This study applies the proposed model to the bankruptcy prediction problem using a real data set from Korean companies. The research data used in this study contains 1832 externally non-audited firms which filed for bankruptcy (916 cases) and non-bankruptcy (916 cases). Financial ratios categorized as stability, profitability, growth, activity and cash flow were investigated through literature review and basic statistical methods and we selected 8 financial ratios as the final input variables. We separated the whole data into three subsets as training, test and validation data set. In this study, we compared the proposed model with several comparative models including the simple individual SVM model, the simple bagging model and the instance selection based SVM model. The McNemar tests were used to examine whether the proposed model significantly outperforms the other models. The experimental results show that the proposed model outperforms the other models.

A Study on the Development of a Simulation Model for Predicting Soil Moisture Content and Scheduling Irrigation (토양수분함량 예측 및 계획관개 모의 모형 개발에 관한 연구(I))

  • 김철회;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4279-4295
    • /
    • 1977
  • Two types of model were established in order to product the soil moisture content by which information on irrigation could be obtained. Model-I was to represent the soil moisture depletion and was established based on the concept of water balance in a given soil profile. Model-II was a mathematical model derived from the analysis of soil moisture variation curves which were drawn from the observed data. In establishing the Model-I, the method and procedure to estimate parameters for the determination of the variables such as evapotranspirations, effective rainfalls, and drainage amounts were discussed. Empirical equations representing soil moisture variation curves were derived from the observed data as the Model-II. The procedure for forecasting timing and amounts of irrigation under the given soil moisture content was discussed. The established models were checked by comparing the observed data with those predicted by the model. Obtained results are summarized as follows: 1. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as the equation(2). 2. Among the various empirical formulae for potential evapotranspiration (Etp), Penman's formula was best fit to the data observed with the evaporation pans and tanks in Suweon area. High degree of positive correlation between Penman's predicted data and observed data with a large evaporation pan was confirmed. and the regression enquation was Y=0.7436X+17.2918, where Y represents evaporation rate from large evaporation pan, in mm/10days, and X represents potential evapotranspiration rate estimated by use of Penman's formula. 3. Evapotranspiration, Et, could be estimated from the potential evapotranspiration, Etp, by introducing the consumptive use coefficient, Kc, which was repre sensed by the following relationship: Kc=Kco$.$Ka+Ks‥‥‥(Eq. 6) where Kco : crop coefficient Ka : coefficient depending on the soil moisture content Ks : correction coefficient a. Crop coefficient. Kco. Crop coefficients of barley, bean, and wheat for each growth stage were found to be dependent on the crop. b. Coefficient depending on the soil moisture content, Ka. The values of Ka for clay loam, sandy loam, and loamy sand revealed a similar tendency to those of Pierce type. c. Correction coefficent, Ks. Following relationships were established to estimate Ks values: Ks=Kc-Kco$.$Ka, where Ks=0 if Kc,=Kco$.$K0$\geq$1.0, otherwise Ks=1-Kco$.$Ka 4. Effective rainfall, Re, was estimated by using following relationships : Re=D, if R-D$\geq$0, otherwise, Re=R 5. The difference between rainfall, R, and the soil moisture depletion D, was taken as drainage amount, Wd. {{{{D= SUM from { {i }=1} to n (Et-Re-I+Wd)}}}} if Wd=0, otherwise, {{{{D= SUM from { {i }=tf} to n (Et-Re-I+Wd)}}}} where tf=2∼3 days. 6. The curves and their corresponding empirical equations for the variation of soil moisture depending on the soil types, soil depths are shown on Fig. 8 (a,b.c,d). The general mathematical model on soil moisture variation depending on seasons, weather, and soil types were as follow: {{{{SMC= SUM ( { C}_{i }Exp( { - lambda }_{i } { t}_{i } )+ { Re}_{i } - { Excess}_{i } )}}}} where SMC : soil moisture content C : constant depending on an initial soil moisture content $\lambda$ : constant depending on season t : time Re : effective rainfall Excess : drainage and excess soil moisture other than drainage. The values of $\lambda$ are shown on Table 1. 7. The timing and amount of irrigation could be predicted by the equation (9-a) and (9-b,c), respectively. 8. Under the given conditions, the model for scheduling irrigation was completed. Fig. 9 show computer flow charts of the model. a. To estimate a potential evapotranspiration, Penman's equation was used if a complete observed meteorological data were available, and Jensen-Haise's equation was used if a forecasted meteorological data were available, However none of the observed or forecasted data were available, the equation (15) was used. b. As an input time data, a crop carlender was used, which was made based on the time when the growth stage of the crop shows it's maximum effective leaf coverage. 9. For the purpose of validation of the models, observed data of soil moiture content under various conditions from May, 1975 to July, 1975 were compared to the data predicted by Model-I and Model-II. Model-I shows the relative error of 4.6 to 14.3 percent which is an acceptable range of error in view of engineering purpose. Model-II shows 3 to 16.7 percent of relative error which is a little larger than the one from the Model-I. 10. Comparing two models, the followings are concluded: Model-I established on the theoretical background can predict with a satisfiable reliability far practical use provided that forecasted meteorological data are available. On the other hand, Model-II was superior to Model-I in it's simplicity, but it needs long period and wide scope of observed data to predict acceptable soil moisture content. Further studies are needed on the Model-II to make it acceptable in practical use.

  • PDF

Simultaneous Determination of Penicillin Antibiotics in Meat using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS를 이용한 육류 중 페니실린계 항생제 8종의 동시분석 및 적용성 검증)

  • Kim, Myeong-Ae;Yoon, Su-Jin;Kim, MeeKyung;Cho, Yoon-Jae;Choi, Sun-Ju;Chang, Moon-Ik;Lee, Sang-Mok;Kim, Hee-Jeong;Jeong, Jiyoon;Rhee, Gyu-Seek;Lee, Sang-Jae
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.2
    • /
    • pp.131-140
    • /
    • 2014
  • The objective of this study was to develop a simultaneous method of 8 penicillin antibiotics including amoxicillin, ampicillin, cloxacillin, dicloxacillin, nafcillin, oxacillin, penicillin G and penicillin V in meat using LC-MS/MS. The procedure involves solid phase extraction with HLB cartridge and subsequent analysis by LC-MS/MS. To optimize MS analytical condition of 8 compounds, each parameter was established by multiple reaction monitoring in positive ion mode. The chromatographic separation was achieved on a $C_{18}$ column with a mobile phase of 0.05% formic acid and 0.05% formic acid in acetonitrile at a flow rate of 0.2 mL/min for 20 min with a gradient elution. The developed method was validated for specificity, linearity, accuracy and precision in beef, pork and chicken. The recoveries were 71.0~106%, and relative standard deviations (RSD) were 4.0~11.2%. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.003~0.008 mg/kg and 0.01~0.03 mg/kg, respectively, that are below maximum residue limit (MRL) of the penicillins. This study also performed survey of residual penicillin antibiotics for 193 samples of beef, pork and chicken collected from 9 cities in Korea. Penicillins were not found in all the samples except a sample of pork which contained cloxacillin (concentration of 0.08 mg/kg) below the MRL (0.3 mg/kg).

Knowledge graph-based knowledge map for efficient expression and inference of associated knowledge (연관지식의 효율적인 표현 및 추론이 가능한 지식그래프 기반 지식지도)

  • Yoo, Keedong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.49-71
    • /
    • 2021
  • Users who intend to utilize knowledge to actively solve given problems proceed their jobs with cross- and sequential exploration of associated knowledge related each other in terms of certain criteria, such as content relevance. A knowledge map is the diagram or taxonomy overviewing status of currently managed knowledge in a knowledge-base, and supports users' knowledge exploration based on certain relationships between knowledge. A knowledge map, therefore, must be expressed in a networked form by linking related knowledge based on certain types of relationships, and should be implemented by deploying proper technologies or tools specialized in defining and inferring them. To meet this end, this study suggests a methodology for developing the knowledge graph-based knowledge map using the Graph DB known to exhibit proper functionality in expressing and inferring relationships between entities and their relationships stored in a knowledge-base. Procedures of the proposed methodology are modeling graph data, creating nodes, properties, relationships, and composing knowledge networks by combining identified links between knowledge. Among various Graph DBs, the Neo4j is used in this study for its high credibility and applicability through wide and various application cases. To examine the validity of the proposed methodology, a knowledge graph-based knowledge map is implemented deploying the Graph DB, and a performance comparison test is performed, by applying previous research's data to check whether this study's knowledge map can yield the same level of performance as the previous one did. Previous research's case is concerned with building a process-based knowledge map using the ontology technology, which identifies links between related knowledge based on the sequences of tasks producing or being activated by knowledge. In other words, since a task not only is activated by knowledge as an input but also produces knowledge as an output, input and output knowledge are linked as a flow by the task. Also since a business process is composed of affiliated tasks to fulfill the purpose of the process, the knowledge networks within a business process can be concluded by the sequences of the tasks composing the process. Therefore, using the Neo4j, considered process, task, and knowledge as well as the relationships among them are defined as nodes and relationships so that knowledge links can be identified based on the sequences of tasks. The resultant knowledge network by aggregating identified knowledge links is the knowledge map equipping functionality as a knowledge graph, and therefore its performance needs to be tested whether it meets the level of previous research's validation results. The performance test examines two aspects, the correctness of knowledge links and the possibility of inferring new types of knowledge: the former is examined using 7 questions, and the latter is checked by extracting two new-typed knowledge. As a result, the knowledge map constructed through the proposed methodology has showed the same level of performance as the previous one, and processed knowledge definition as well as knowledge relationship inference in a more efficient manner. Furthermore, comparing to the previous research's ontology-based approach, this study's Graph DB-based approach has also showed more beneficial functionality in intensively managing only the knowledge of interest, dynamically defining knowledge and relationships by reflecting various meanings from situations to purposes, agilely inferring knowledge and relationships through Cypher-based query, and easily creating a new relationship by aggregating existing ones, etc. This study's artifacts can be applied to implement the user-friendly function of knowledge exploration reflecting user's cognitive process toward associated knowledge, and can further underpin the development of an intelligent knowledge-base expanding autonomously through the discovery of new knowledge and their relationships by inference. This study, moreover than these, has an instant effect on implementing the networked knowledge map essential to satisfying contemporary users eagerly excavating the way to find proper knowledge to use.

A Study on the Influence of Workers' Aspiration for Academic Needs on Participation in University Education (근로자의 학업욕구 열망이 대학교육 참여에 미치는 영향에 관한 연구)

  • Lee, Ji-Hun;Mun, Bok-Hyun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.231-241
    • /
    • 2021
  • This study intended to present strategies and implications for attracting new students and customized education to university officials through research on the participation of workers' academic aspirations in university education. Thus, variables were derived by analyzing prior data, and causal settings between variables and questionnaires were developed. Subject to the survey, 331 workers interested in participating in university education were collected through interpersonal interviews. The collected data were dataized, and reliability and feasibility verification and frequency analysis were conducted. Finally, we validate the fit of the structural equation model and the causal relationship for each concept. Therefore, the results of the validation show the following implications. First, university officials should be motivated by a mentor and mentee system with experienced people who have switched to a suitable vocational group through university education. It will also be necessary to develop and disseminate programs so that they can continue to develop themselves for the future. To this end, it will be necessary to help them understand their aptitude and strengths through consultation with experts. Second, university officials should strengthen public relations so that prospective students can know the cases and information of the job transformation of the admitted workers through recommendations. It will also be necessary to develop university education programs that can self-develop, accept various ideas through "public contest", and provide accurate information about university education to workers through re-processing. Third, university officials should provide workers with a program that allows them to catch two rabbits: job transformation and self-improvement through university education. In other words, it is necessary to stimulate the motivation of workers by providing various information such as visiting advanced overseas companies, obtaining various certificates, moving between departments of blue-collar and white-collar, and transfer opportunities. Fourth, university officials should actively promote university education programs related to this by participating in university education and receiving systematic education and the flow of social environment. Finally, university officials will need to consult and promote workers so that they can self-develop when they participate in college education, and they will have to figure out what they need for self-development through demand surveys and analysis.

Attenuation of Oxidative Stress-Induced HepG2 Cellular Damage by Cirsiumjaponicum Root Extract (HepG2 세포에서 대계 추출물에 의한 산화적 스트레스 유발 세포 손상의 억제)

  • Da Jung Ha;Seohwi Kim;Byunwoo Son;Myungho Jin;Sungwoo Cho;Sang Hoon Hong;Yung Hyun Choi;Sang Eun Park
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1002-1014
    • /
    • 2023
  • The root of Cirsium japonicum var. maackii (Maxim.) has long been used in traditional medicine to prevent the onset and progression of various diseases and has been reported to exert a wide range of physiological effects, including antioxidant activity. However, research on its effects on hepatocytes remains scarce. This study used the human hepatocellular carcinoma HepG2 cell line to investigate the antioxidant activity of ethanol extract of C. japonicum root (EECJ) on hepatocytes. Hydrogen peroxide (H2O2) was used to mimic oxidative stress. The results showed that EECJ significantly reverted the decrease in cell viability and suppressed the release of lactate dehydrogenase in HepG2 cells treated with H2O2. Moreover, an analysis of changes in cell morphology, flow cytometry, and microtubule-associated protein light chain 3 (LC3) expression showed that EECJ significantly inhibited HepG2 cell autophagy induced by H2O2. Furthermore, it attenuated H2O2-induced apoptosis and cell cycle disruption by blocking intracellular reactive oxygen species and mitochondrial superoxide production, indicating strong antioxidant activity. EECJ also restored the decreased levels of intracellular glutathione (GSH) and enhanced the expression and activity of superoxide dismutase and GSH peroxidase in H2O2-treated HepG2 cells. Although an analysis of the components contained in EECJ and in vivo validation using animal models are needed, these findings indicate that EECJ is a promising candidate for the prevention and treatment of oxidative stress-induced liver cell damage.

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.