• Title/Summary/Keyword: Flow speed

Search Result 4,110, Processing Time 0.029 seconds

Dynamic PIV analysis of High-Speed Flow Ejected from the Inflator Housing of a Curtain-type Airbag (Dynamic PIV를 이용한 커튼형 에어백 부품림 장치의 유동해석)

  • Jang, Young-Gil;Kim, Seok;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.407-408
    • /
    • 2006
  • Passenger safety is one of the most important considerations in the purchase of an automobile. A curtain-type air bag is increasingly adapted in deluxe cars for protecting passengers from the danger of side clash. Inflator housing is a main part of the curtain-type air bag system for supplying high-pressure gases to pump up the air bag-curtain. Although the inflator housing is fundamental in designing a curtain-type air bag system, flow information on the inflator housing is very limited. In this study, we measured instantaneous velocity fields of a high-speed flow ejecting from the inflator housing using a dynamic PIV system. From the velocity field data measured at a high frame-rate, we evaluated the variation of the mass flow rate with time. From the instantaneous velocity fields of flow ejecting from the airbag inflator housing in the initial stage, we can see a flow pattern of broken shock wave front and its downward propagation. The flow ejecting from the inflator housing was found to have large velocity fluctuations and the maximum velocity was about 700m/s. The velocity of high-speed flow was decreased rapidly and the duration of high-speed flow over 400m/s was maintained only to 30ms. After 100ms, there was no perceptible flow.

  • PDF

Behavior of Rotating Stall Cell in a High Specific-Speed Diagonal Flow Fan

  • Shiomi, Norimasa;Cai, W.X.;Muraoka, A.;Kaneko, K.;Setoguchi, T.
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1860-1868
    • /
    • 2001
  • An experimental investigation was carried out to clarify unsteady flow fields with rotating stall cell, especially behavior of stall cell, in a high specific-speed diagonal flow fan. As its specific-speed is vary high for a diagonal flow fan, its pressure-flow rate curve tends to indicate unstable characteristics caused by rotating stall similar to axial flow fan. Although for an axial flow fan many researchers have investigated such the flow field, for a diagonal flow fan tittle study has been done. In this study, velocity fields at rotor Inlet in a high specific-speed diagonal flow fan were measured by use of a single slant hot-wire probe. These data were processed by using the "Double Phase-Locked Averaging"(DPLA) technique, i. e. phases of both the rotor blade and the stall cell were taken into account. The behaviors of stall cell at rotor inlet were visualized for the meridional, tangential and radial velocity.

  • PDF

Numerical Flow Simulations Around High Speed Train Using CHIMERA Grid Technique (CHIMERA 격자기법을 이용한 고속전철 주위의 전산유동해석)

  • Choi S. W.;Kim I. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.81-87
    • /
    • 1996
  • The aerodynamic charateristics of high speed train can be improved by well-designing of its fore-body shape. In this paper, as a way of the design a fore-body shape which has optimal aerodynamic charasteristics, 9 models of fore-body shapes are proposed and the change of aerodynamic charateristics is studied through calculations of flow field around high speed train for each fore-body shape. The flow field around high speed trains are calculated using Thin-Layer Navier-Stokes equation and Chimera grid technique. The application of Chimera grid technique to these flow calculations over high speed train which has ground plane under the train makes grid generation easily. As a computaional algorithm, Pulliam and Chaussee's Diagonal algorithm, the modified form of the Beam and Warming's AF scheme which operates on block-tridiagonal matrices, is selected to reduce computaional time. Introducing hole points flag concept to this Diagonal algorithm. a algorithm for Chimera grid is generated. The variational trends of aerodynamic characteristics are studied from the results of flow calculations around high speed trains for 9 fore-body shapes.

  • PDF

Application of a Strip Speed Measurement for Hot Strip Rolling (열연 사상압연공정 스탠드간 열연판속도 측정시스템 적용연구)

  • 홍성철;최승갑
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.212-212
    • /
    • 2000
  • This study was performed to construct a hot strip speed measuring system and check over whether the measured speed can be used for improving the mass flow of the head-end part of a hot strip in the 7-stand finishing mill. Because the mass flow in hot rolling mill affects the looper operation and the thickness and width control of a strip, accurate measurement of strip speed ie important. The measured speed was compared with the roll speeds of No. 6 and No.7 stand to check the performance of the system and analyzed to find how to apply the speed. As a result, it is shown that the accuracy of the system is enough, strip thickness error can be reduced by -275∼+200$\mu\textrm{m}$ using the measured speed and the existing FSU model has low accuracy for predicting forward slip rate. A neural network was developed to calculate forward slip rate instead of FSU model. The test result of the neural network shows that the neural network is more accurate than the FSU model.

  • PDF

A Study on the Performance and Internal Flow Characteristics of a Very Low Specific Speed Centrifugal Pump (극저비속도 원심펌프의 성능과 내부유동특성에 관한 연구)

  • Kurokawa Junichi;Lee Young-Ho;Choi Young-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.784-794
    • /
    • 2005
  • In the very low specific speed range ($n_s=0.24$ < 0.25, non-dimensional), the efficiency of centrifugal pump designed by a conventional method is very low in common. Therefore, positive-displacement pumps have long been used widely. Recently, since the centrifugal pumps are becoming higher in rotational speed and smaller in size, there expects to develop a new centrifugal pump with a high performance to replace the positive-displacement pumps. The purpose of this study is to investigate the internal flow characteristics of a very low specific speed centrifugal pump and to examine the effect of internal flow pattern on pump performance. The results show that the theoretical head definition of semi-open impeller should be revised by the consideration of high slip factor in the semi-open impeller, and the leakage flow through the tip clearance results in a large effect on the impeller internal flow. Strong reverse flow at the outlet of semi-open impeller reduces the absolute tangential velocity considerably, and the decreased absolute tangential velocity increasese the slip factor with the reduction of theoretical head.

A Study on Extraction Method of Hazard Traffic Flow Segment (고속도로 위험 교통류 구간 추출 방안 연구)

  • Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.47-54
    • /
    • 2021
  • The number of freeway traffic accidents in Korea is about 4,000 as of 2020, and deaths per traffic accident is about 3.7 times higher than other roads due to non-recurring congestion and high driving speed. Most of the accident types on freeways are side and rear-end collisions, and one of the main factors is hazard traffic flow caused by merge, diverge and accidents. Therefore, the hazard traffic flow, which appears in a continuous flow such as a freeway, can be said to be important information for the driver to prevent accidents. This study tried to classify hazard traffic flows, such as the speed change point and the section where the speed difference by lane, using individual vehicle information. The homogeneous segment of speed was classified using spatial separation based on geohash and space mean speed that can indicate the speed difference of individual vehicles within the same section and the speed deviation between vehicles. As a result, I could extract the diverging influence segment and the hazard traffic flow segment that can provide dangerous segments information of freeways.

The Effect of Inlet Distorted Flow on Steady and Unsteady Performance of a Centrifugal Compressor (입구 비 균일 유동이 원심압축기의 정상 및 비정상 성능에 미치는 영향)

  • Kang Shin-Hyoung;Park Jae-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.971-978
    • /
    • 2005
  • Effects of inlet distorted flow on performance, stall and surge are experimentally investigated for a high-speed centrifugal compressor. Tested results for the distorted inlet flow cases are compared with the result of the undistorted one. The performance of compressor is slightly deteriorated due to the inlet distortion. The inlet distortion does not affect the number of stall cell and the propagation velocity. It also does not change stall inception flow rate. However, as the distortion increases, stall starts at the higher flow rate for low speed and at the lower flow rate for high speed. For 50,000 rpm stall occurrs as the flow rate decreases, however disappears fur the smaller flow rate. This is due to the interaction of surge and stall. After the stall and surge interact, the number of stall cell decreases.

A study on the influence of turbulence characteristics on flame propagation in swirl flow field (스월유동장의 화염전파에 미치는 난류특성의 영향에 관한 연구)

  • Lee, Sang-Jun;Lee, Jong-Tae;Lee, Seong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3282-3292
    • /
    • 1996
  • Flow velocity was measured using a hot wire anemometer. Turbulence intensity was in proportion to mean flow velocity regardless of swirl velocity. And integral length scale has proportional relation with swirl velocity regardless of measurement position. Flame speed calculated by radius of visualized flame was increased and then decreased according to lapse of time from spark. Maximum flame speed was increased according to increase of turbulence intensity. Burning speed and flame transport effect increased with increase of swirl velocity, but ratio of burning speed to flame speed decreased with increased of swirl velocity. Mass fraction burned versus volume fraction burned was increased in proportion to the increase of turbulence intensity, caused by increase of combustion promotion effect according to increase of turbulence intensity and scale.

Capillary Flow in Different Cells of Thuja orientalis, Gmelina arborea, Phellodendron amurense

  • Chun, Su Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.3
    • /
    • pp.248-258
    • /
    • 2017
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood Thuja orientalis L., diffuse-porous wood Gmelina arborea Roxb., and ring-porous wood Phellodendron amurense Rupr., Longitudinal flow was considered from bottom to top while the radial flow was considered from bark to pith directions. In radial direction, ray cells and in longitudinal direction tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents(MC). The variation of penetration speed for different species was observed and the reasons behind for this variation were explored. The highest radial penetration depth was found in ray parenchyma of T. orientalis but the lowest one was found in ray parenchyma of P. amurense. The average liquid penetration depth in longitudinal trachied of T. orientalis was found the highest among all the other cells. The penetration depth in fiber of G. arborea was found the lowest among the other longitudinal cells. It was found that cell dimension and also meniscus angle of safranine solution with cell walls were the prime factors for the variation of liquid flow speed in wood. Vessel was found to facilitate prime role in longitudinal penetration for hardwood species. The penetration depth in vessel of G. arborea was found highest among all vessels. Anatomical features like ray parenchyma cell length and diameter, end-wall pits number were found also responsible fluid flow differences. Initially liquid penetration speed was high and the nit gradually decreased in an uneven rate. Liquid flow was captured via video and the penetration depths in those cells were measured. It was found that even in presence of abundant rays in hardwood species, penetration depth of liquid in radial direction of softwood species was found high. Herein the ray length, lumen area, end wall pit diameter determined the radial permeability. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Following a go-stop-go cycle, the penetration speed of a liquid decreased over time.

Performance Characteristic of a Pipe Type Centrifugal Pump (파이프형 원심펌프의 성능특성에 관한 실험적 연구)

  • Yu, HyeonJu;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.32-36
    • /
    • 2012
  • The positive displacement pump and the regenerative pump are widely used in the range of low specific speed, $n_s{\leq}100$[rpm, m3/min, m]. The positive displacement pump is not suitable for miniaturization and operation in high rotational speed. The regenerative pump has a problem with large leakage flow and low efficiency. While the centrifugal pump has advantages of high efficiency, miniaturization and high rotational speed, efficiency drops sharply with decrease in specific speed. Therefore the purpose of this study is to design a new type of centrifugal pump that has advantages of centrifugal pumps in operation in low specific speed. The name of this new type of pump was called 'Pipe type centrifugal pump', since the flow path through the impeller is simple circular pipe. Due to the simple shape of impeller, the manufacturing process is simple and cost is low. There is strong jet flow at the outlet of the impeller. This jet induces flow path loss, meridional dynamic pressure loss and mixing loss. Large disk friction makes the efficiency be limitted in the range of low specific speed. Even though the loss and the low efficiency, 'Pipe type centrifugal pump' represents stable performance, affordable pressure ratio and efficiency better than that of other low specific speed pumps.