• 제목/요약/키워드: Flow rate-pressure gradient

검색결과 81건 처리시간 0.023초

안쪽축이 회전하는 환형관내 천이 유동 연구 (An Study on the Transitional Flows in a Concentric Annulus with Rotating Inner Cylinder)

  • 황영규;김영주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.45-50
    • /
    • 2001
  • This experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure losses and skin-friction coefficients have been measured for the fully developed flow of a 0.2 % aqueous solution of sodium carbomethyl cellulose (CMC) at a inner cylinder rotational speed of $0{\sim}600$ rpm. The transitional flow has been examined by the measurement of pressure losses, to reveal the relation of the Reynolds numbers with the skin-friction coefficients, in the laminar and transitional flow regimes. The occurrence of transition has been checked by the gradient change of pressure losses and skin-friction coefficient with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually declined for turbulent flow regime. Consequently, the critical(axial-flow) Reynolds number decrease as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the onset of taylor vortices.

  • PDF

적응격자계를 이용한 경계층의 확산제어천이 예측 (Prediction of the Diffusion Controlled Boundary Layer Transition with an Adaptive Grid)

  • 조지룡
    • 한국전산유체공학회지
    • /
    • 제6권4호
    • /
    • pp.15-25
    • /
    • 2001
  • Numerical prediction of the diffusion controlled transition in a turbine gas pass is important because it can change the local heat transfer rate over a turbine blade as much as three times. In this study, the gas flow over turbine blade is simplified to the flat plate boundary layer, and an adaptive grid scheme redistributing grid points within the computation domain is proposed with a great emphasis on the construction of the grid control function. The function is sensitized to the second invariant of the mean strain tensor, its spatial gradient, and the interaction of pressure gradient and flow deformation. The transition process is assumed to be described with a κ-ε turbulence model. An elliptic solver is employed to integrate governing equations. Numerical results show that the proposed adaptive grid scheme is very effective in obtaining grid independent numerical solution with a very low grid number. It is expected that present scheme is helpful in predicting actual flow within a turbine to improve computation efficiency.

  • PDF

고성능 PRO 모듈 개발 및 운전조건이 모듈 성능에 미치는 영향 (The development of high-performance PRO module and effects of operating condition on the performance of PRO module)

  • 한만재;심연주;이종화
    • 상하수도학회지
    • /
    • 제31권4호
    • /
    • pp.303-310
    • /
    • 2017
  • Pressure retarded osmosis(PRO) has attracted much attention as potential technology to reduce the overall energy consumption for reverse osmosis(RO) desalination. The RO/PRO hybrid process is considered as the most logical next step for future desalination. The PRO process aims to harness the osmotic energy difference of two aqueous solutions separated by a semipermeable membrane. By using the concentrated water(RO brine) discharged from existing RO plants, the PRO process can effectively exploit a greater salinity gradient to reduce the energy cost of processing concentrated water. However, in order to use RO brine as the draw solution, PRO membrane must have high water flux and enough mechanical strength to withstand the high operational pressure. This study investigates the development of a thin film composite PRO membrane and spiral wound module for high power density. Also, the influence of membrane backing layer on the overall power density was studied using the characteristic factors of PRO membranes. Finally, the performance test of an 8-inch spiral wound module was carried out under various operating conditions(i.e. hydraulic pressure, flow rate, temperature). As the flow rate and temperature increased under the same hydraulic pressure, the PRO performance increased due to the growth of water permeability coefficient and osmotic pressure. For a high performance PRO system, in order to optimize the operating conditions, it is highly recommended that the flow pressure be minimized while the flow rate is maintained at a high level.

Clogging theory-based real time grouting management system applicable in soil conditions

  • Kwon, Young-Sam;Kim, Jinchun;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.159-168
    • /
    • 2018
  • In this study, a real-time grouting management system based on the clogging theory was established to manage injection procedure in real time. This system is capable of estimating hydraulic permeability with the passage of time as the grout permeates through the ground, and therefore, capable of estimating real time injection distance and flow rate. By adopting the Controlled Injection Pressure (CoIP) model, it was feasible to predict the grout permeation status with the elapse of time by consecutively updating the hydraulic gradient and flow rate estimated from a clogging-induced alteration of pore volume. Moreover, a method to estimate the volume of the fractured gap according to the reduction in injection pressure was proposed. The validity of the proposed system was successfully established by comparing the estimated values with the measured field data.

Electrohydrodynamic Micropump Driven by Traveling Electric Fields

  • Park, Jin-Woo;Kim, Yong-Kweon
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권3호
    • /
    • pp.99-104
    • /
    • 1997
  • A novel driving theory on the electrohydrodynamic (EHD) pump driven by traveling electric fields without the temperature gradient is proposed. The equations of the generating pressure and the flow rate are derived. The EHD micropump is fabricated by micromachining technology and tested. The channel heights are 50$\mu\textrm{m}$, 100$\mu\textrm{m}$ and 200$\mu\textrm{m}$ are respectively an the channel width is 3 mm. The spacing and width of the electrodes are both 40$\mu\textrm{m}$. The maximum pressure is 70.3 Pa, 35.4 Pa and 17.2 pa at he frequency of 0.2Hz for each channel height (50$\mu\textrm{m}$, 100$\mu\textrm{m}$ and 200$\mu\textrm{m}$) and the maximum flow rate is 0.90x10\ulcorner ${\mu}$$\ell$/min, 1.88x10\ulcorner ${\mu}$$\ell$/min and 4.85x10\ulcorner ${\mu}$$\ell$/min at the frequency of 0.4H for each channel height.

  • PDF

초소형 추진장치에 적용을 위한 누센펌프의 멤브레인 종류에 따른 질유량 특성 (Mass flow rate of Knudsen pump According to Membrane Type for Micro Propulsion Applications)

  • 김혜환;허환일
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.36-40
    • /
    • 2008
  • 마이크로 추진장치에서 노즐의 소형화는 많은 유동손실을 유발한다. 이러한 유동손실을 극복하기 위해 본 연구에서는 열적발산원리를 이용한 새로운 개념의 마이크로 추진장치에 대한 기초연구를 진행하였다. 움직이는 부품 없이 오직 온도구배만으로 추진제를 낮은 온도에서 높은 온도로 자체 펌핑이 가능한 열적발산장치를 설계, 제작 하였으며, 진공환경에서 누센수에 따른 멤브레인 압력구배효율을 분석하였다. 또한 기존 누센펌프의 멤브레인인 폴리이미드와 종이재질의 전통 한지를 사용하여 질유량 특성을 비교하였다.

  • PDF

안쪽축이 회전하는 환형관내 천이유동에 관한 연구 (An Experimental Study on the Transitional Flows in a Concentric Annu- lus with Rotating Inner Cylinder)

  • 김영주;김철수;황영규
    • 에너지공학
    • /
    • 제11권4호
    • /
    • pp.299-305
    • /
    • 2002
  • 본 연구에서 실험과 수치해석 검증은 지름비 0.52인 동심환형관내에서 안쪽축이 회전하고 바깥쪽축이 고정된 유동장의 유동특성을 수행하였다. 압력손실과 마찰계수는 안쪽축이 0~600 rpm 회전시 물과 0.2% CMC 수용액을 완전히 발달된 유동장에서 측정하였다. 천이유동은 표면마찰계수(C$_{f}$ )에 대하여 로스비수(Ro)와 레이놀즈수(Re)관계를 나타내기 위하여 압력손실 측정에 의해 확인하였다. 천이발생은 레이놀즈수에 대하여 압력손실과 마찰계수의 구배변화에 의해 조사하였다. 회전으로 인한 마찰계수의 증가율은 천이영역에서 대하여 갑자기 감소함에 반하여 층류영역에서 균일하며, 난류영역에서는 점차적으로 감소함을 알 수 있었다.

사행 유로를 갖는 고분자 전해질 연료전지의 기체확산층 내부에서의 우회 유동 예측 (Prediction of Bypass Flow Rate through Gas Diffusion Layer in PEMFC with Serpentine Flow Channels)

  • 전세계;김경연
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.293-299
    • /
    • 2012
  • The serpentine flow channel is widely used in polymer electrolyte membrane fuel cells (PEMFCs) to prevent flooding phenomena because it effectively removes liquid water in the flow channel. The pressure drop between inlet and outlet increases as compared with straight channels due to minor losses associated with the corners of the turning configurations. This results in a strong pressure gradient between adjacent channels in specific regions, where some amount of reactant gas can be delivered to catalyst layers by convection through a gas diffusion layer (GDL). The enhancement of the convective flow in the GDL, so-called bypass flow, affects fuel cell performance since the bypass flow influences the reactant transport and thus its concentration over the active area. In the present paper, for the bipolar plate design, a simple analytic model has been proposed to predict the bypass flow in the serpentine type flow channels and validated with three-dimensional numerical simulation results.

인조혈관 동정맥루의 혈액 투석량에 따른 인조혈관 내부 유동 특성에 관한 수치해석 연구 (NUMERICAL STUDY ON BLOOD FLOW CHARACTERISTICS IN A ARTERIOVENOUS GRAFT WITH DELIVERED DOSE DURING HEMODIALYSIS)

  • 김재열;노경철;유홍선
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.84-91
    • /
    • 2011
  • Hemodialysis is essential for patients with end stage renal failure. It is important to improve the patency rate and to minimize occurrence of the stenosis. Also, the blood flow to the artificial kidney can affect the blood flow characteristics through arteriovenous graft. Thus, the delivered dose are important factors for analyzing hemodynamic characteristics during hemodialysis access. In this study, the numerical analysis was performed for the effect of the delivered dose during hemodialysis access on the blood flow through the graft. As a result, The adverse pressure gradient occurred in case of a larger delivered dose through a catheter than standard dose and the flow instability increased. Also the circulation flow appeared largely at anastomotic site of the vein when the delivered dose was exceeded about half blood flow of inlet blood flow.

혈액 투석 시 주사침에서의 투석량에 따른 인조혈관 내부 유동 특성에 관한 수치해석 연구 (Numerical Study on Blood Flow Characteristics in a Arteriovenous Graft with Delivered dose During Hemodialysis)

  • 김재열;노경철;유홍선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.469-476
    • /
    • 2011
  • Hemodialysis is essential for patients with end stage renal failure. It is important to improve the patency rate and to minimize occurrence of the stenosis. Also, the blood flow to the artificial kidney can affect the blood flow characteristics though arteriovenous graft. Thus, the delivered dose are important factors for analyzing hemodynamic characteristics during hemodialysis access. In this study, the numerical analysis was performed for the effect of the delivered dose during hemodialysis access on the blood flow through the graft. As a result, The adverse pressure gradient occurred in case of a larger delivered dose through a catheter than standard dose and the flow instability increased. Also the circulation flow appeared largely at anastomotic site of the vein when the delivered dose was exceeded about half blood flow of inlet blood flow.

  • PDF