• Title/Summary/Keyword: Flow rate gradient

검색결과 341건 처리시간 0.022초

마이크로 PTV 기법을 이용한 미세채널 내부 계면의 electrokinetic 효과 해석 (Micro-PIV Measurements of interfacial electrokinetic effects in a microchannel)

  • 김국배;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.49-50
    • /
    • 2002
  • In micro-channels, the electro-viscous effect is caused by the electrical double layer on pressure-driven liquid flow. Velocity fields of flow inside micro-channels were measured using micro-PIV system for investigating the electro-viscous effect. De-ionized water and aqueous NaCl solutions with four different concentrations were used as working fluid in a PDMS micro-channel of $100{\mu}m$ width and $66{\mu}m$ height. The pressure gradient, dP/dx, was determined from the pre-determined input flow rate Q of syringe pump. The mean velocity $u_m$ used for calculating Reynolds number was obtained from the PIV velocity field data. These are used to plot the pressure gradient as a function of Reynolds numbers. The pressure gradient far lower concentration solution $(10^{-5}\;M)$ was higher than that for the higher concentration solution. The increase of flow resistance was about $30\%\;and\;37.5\%$ at Re=0.02 and 0.06, respectively.

  • PDF

비압축성 재생형 기계의 손 실 모델 개선에 관한 연구 (Study on Improved Loss Model for Incompressible Regenerative Turbomachines)

  • 최원철;유일수;정명균
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.341-344
    • /
    • 2008
  • The complicated helical flow formed in the regenerative turbomachines is usually decomposed into a peripheral component and a circulatory component. On the basis of the momentum exchange theory, the circulatory flow plays a critical role of imparting angular momentum to the peripheral flow. Therefore, the accuracy of performance prediction is dominated by the circulatory flow modeling. Until now the circulatory flow has been accounted of a standstill flow normal to the peripheral flow. However, the circulatory path from the impeller exit to the re-entrance inlet is exposed to the adverse pressure gradient, so it would be more realistic to describe that the circulatory flow is formed on the skewed plane not perpendicular to the peripheral flow. Present study suggests new circulatory flow loss model including the effect of adverse pressure gradient and modifies the effective circulatory flow rate and circulatory pivot which were previously published.

  • PDF

Composition and interface quality control of AlGaN/GaN heterostructure and their 2DEG transport properties

  • Kee, Bong;Kim, H.J.;Na, H.S.;Kwon, S.Y.;Lim, S.K.;Yoon, Eui-Joon
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제4권3호
    • /
    • pp.81-85
    • /
    • 2000
  • The effects of $NH_3$ flow rate and reactor pressure on Al composition and the interface of AlGaN/GaN heterostructure were studied. Equilibrium partial pressure of Ga and Al over AiGaN alloy was calculated as a function of growth pressure, $NH_3$flow rate and temperature. It was found equilbrium vapor pressure of Al is significantly lower than that of Ga, thus, the alloy composition mainly controlled by Ga partial pressure. We believe that more decomposition of Ga occur at lower $NH_3$ flow rate and higher growth pressure leads to preferred Al incorporation into AlGaN. The alloy composition gradient became larger at AlGaN/GaN heterointerface at higher reactor pressures, higher Al composition and low $NH_3$ flow rate. This composition gradient lowered sheet carrier concentration and electron mobility as well. We obtained an AlGaN/GaN heterostructure with sheet carrier density of ${\sim}2{\times}10^{13}cm^{-2}$ and mobility of 1250 and 5000 $cm^2$/Vs at 300 K and 100 K, respectively.

  • PDF

비균일 온도분포를 갖는 평판에 대한 충돌제트의 열전달 및 난류유동특성에 관한 연구 (Experimental Study on the Heat Transfer and Turbulent Flow Characteristics of Jet Impinging the Non-isothermal Heating Plate)

  • 한충호;이계복;이충구;이창우
    • 에너지공학
    • /
    • 제10권3호
    • /
    • pp.272-277
    • /
    • 2001
  • 선형온도구배를 갖는 비균일 가열표면에 대한 충돌 제트의 난류유동장과 열전달 특성을 실험을 통해 연구하였다. 제트의 레이놀즈수와 가열판의 온도구배, 그리고 노즐 출구로부터 가열판가지의 거리를 변화시키며 실험을 수행하였다. 최대 열전달은 정체점에서 나타나고 정체점으로부터 벽면방향으로 거리가 증가함에 따라 열전달률은 감소한다. 벽면가지의 거리가 크지 않은 경우는 난류의 영향으로 열전달의 제2정점이 나타난다. 최대 열전달은 노즐과 가열판 사이의 거리가 노즐 직경의 6에서 8배 정도일 때 나타난다. 열전달률의 상관식을 프란틀수와 레이놀즈수, 노즐과 가열판사이의 거리와 직경비 그리고 온도구배의 지수승의 함수로 구하였다. 열전달률과 난류유동장의 관계를 실험을 통해 확인하였다. 벽면제트는 온도구배의 의해 영향을 받았고 벽면거리가 증가할수록 더 크게 나타났다.

  • PDF

맥동관냉동기의 앤탈피이동 (Enthalpy transport in pulse tube refrigerators)

  • 강영구;정은수
    • 설비공학논문집
    • /
    • 제10권2호
    • /
    • pp.180-192
    • /
    • 1998
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations assuming that the axial temperature gradient in the pulse tube is constant. Time-averaged second-order conservation equations of mass, momentum and energy were used to show the existence of steady mass streaming and enthalpy streaming. Effects of axial temperature gradient, velocity amplitude ratio and heat transfer between the gas and the wall on the steady mass streaming and enthalpy streaming were shown. Enthalpy loss due to the steady mass streaming is zero for basic and orifice pulse tube refrigerators, but it is proportional to the axial temperature gradient and steady mass flow rate through a pulse tube for double inlet pulse tube refrigerators.

  • PDF

Net Enthalpy Transport in Pulse Tube Refrigerators

  • Kang, Young-Goo;Jeong, Eun-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제7권
    • /
    • pp.33-44
    • /
    • 1999
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations assuming that the axial temperature gradient in the pulse tube was constant. The time-averaged second-order conservation equations of mass, momentum and energy were used to show the existence of steady mass and enthalpy streaming. Effects of the axial temperature gradient, velocity amplitude ratio, and heat transfer between the gas and the tube wall On the steady mass and enthalpy streaming were shown. Enthalpy loss due to the steady mass streaming is zero for basic and orifice pulse tube refrigerators, but it is proportional to the axial temperature gradient and steady mass flow rate through a pulse tube for double inlet pulse tube refrigerators.

  • PDF

변형구배 결정소성 유한요소해석법을 이용한 니켈기 다결정 합금의 Hall-Petch 관계 모델링 (Modeling the Hall-Petch Relation of Ni-Base Polycrystalline Superalloys Using Strain-Gradient Crystal Plasticity Finite Element Method)

  • 최윤석;조경목;남대근;최일동
    • 한국재료학회지
    • /
    • 제25권2호
    • /
    • pp.81-89
    • /
    • 2015
  • A strain-gradient crystal plasticity constitutive model was developed in order to predict the Hall-Petch behavior of a Ni-base polycrystalline superalloy. The constitutive model involves statistically stored dislocation and geometrically necessary dislocation densities, which were incorporated into the Bailey-Hirsch type flow stress equation with six strength interaction coefficients. A strain-gradient term (called slip-system lattice incompatibility) developed by Acharya was used to calculate the geometrically necessary dislocation density. The description of Kocks-Argon-Ashby type thermally activated strain rate was also used to represent the shear rate of an individual slip system. The constitutive model was implemented in a user material subroutine for crystal plasticity finite element method simulations. The grain size dependence of the flow stress (viz., the Hall-Petch behavior) was predicted for a Ni-base polycrystalline superalloy NIMONIC PE16. Simulation results showed that the present constitutive model fairly reasonably predicts 0.2%-offset yield stresses in a limited range of the grain size.

재생형 블로워의 누설유동 특성과 누설유량 저감을 통한 성능 향상 (Characteristics of Leakage Flow on Regenerative Blower and Leakage-reducing Design for Performance Enhancement)

  • 최민호;김영훈;강신형
    • 한국유체기계학회 논문집
    • /
    • 제14권4호
    • /
    • pp.57-63
    • /
    • 2011
  • Regenerative blower is suitable for hydrogen recirculation in fuel cell vehicle due to its capability of high pressure rise in single stage. Numerical models were applied to investigate inner gap leakage flow characteristics. A leakage flow in the inner gap is dominantly affected by pressure gradient. Therefore a blower with concentric channel type was suggested as one of modified models for reducing the inner gap pressure gradient. Also numerical results such as pressure rise, efficiency, leakage flow rate and torque were compared between modified and reference models. The performance of concentric channel type was improved as a result of reduced leakage flow.

Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery

  • Nagarani, P.;Sarojamma, G.
    • Korea-Australia Rheology Journal
    • /
    • 제20권4호
    • /
    • pp.189-196
    • /
    • 2008
  • The pulsatile flow of blood through a stenosed artery under the influence of external periodic body acceleration is studied. The effect of non-Newtonian nature of blood in small blood vessels has been taken into account by modeling blood as a Casson fluid. The non-linear coupled equations governing the flow are solved using perturbation analysis assuming that the Womersley frequency parameter is small which is valid for physiological situations in small blood vessels. The effect of pulsatility, stenosis, body acceleration, yield stress of the fluid and pressure gradient on the yield plane locations, velocity distribution, flow rate, shear stress and frictional resistance are investigated. It is noticed that the effect of yield stress and stenosis is to reduce flow rate and increase flow resistance. The impact of body acceleration is to enhance the flow rate and reduces resistance to flow.

페어링을 이용한 지면효과를 받는 3차원 날개 접합부의 경계층 박리 제어 (Boundary Layer Separation Control with Fairing at the Junction of 3D Wings Under Ground Effect)

  • 조지혁;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.57-64
    • /
    • 2005
  • Aerodynamic characteristics of three-dimensional wings in ground effect for Aero-levitation Electric Vehicle(AEV) are numerically investigated for various fairing shapes at the junctions of 3D Wings. Numerical results show that a sizeable three-dimensional comer flow separation occurs with formation of an arch vortex at the junction of main and vertical wings, and also that this is predicted the main cause of the high lift-to-drag(L/D) reduction rate of the main wing. To avoid the comer flow separation, the main idea of this study is to reduce the cross section gradient of the comer flow tube near the trailing edge for various fairing shapes. Improvements on L/D ratios of the wings are pursued by breaking the coherence of superimposed adverse pressure gradients at the wing junction when the cross section gradient is changed slowly at the trailing edge.

  • PDF