• Title/Summary/Keyword: Flow of space

Search Result 2,692, Processing Time 0.031 seconds

Numerical Analysis of the Three-Dimensional Wake Flow and Acoustic Field around a Circular Cylinder

  • Kim, Tae-Su;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • For decades, researchers have rigorously studied the characteristics of flow traveling around blunt objects in order to gain greater understanding of the flow around aircraft, vehicles or vessels. Many different types of flow exist, such as boundary layer flow, flow separation, laminar and turbulent flow, vortex and vortex shedding; such types are especially observed around circular cylinders. Vortex shedding around a circular cylinder exhibits a two-dimensional flow structure possessing a Reynolds number within the range of 47 and 180. As the Reynolds number increases, the Karman vortex changes into a three-dimensional flow structure. In this paper, a numerical analysis was performed examining the flow and aero-acoustic field characteristics around a circular cylinder using an optimized high-order compact scheme, which is a high order scheme. The analysis was conducted with a Reynolds number ranging between 300 and 1,000, which belongs to B-mode flow around a circular cylinder. For a B-mode Reynolds number, a proper spanwise length is analyzed in order to obtain the characteristics of three-dimensional flow. The numerical results of the Strouhal number as well as the lift and drag coefficients according to Reynolds numbers are coincident with the other experimental results. Basic research has been conducted studying the effects an unstable three-dimensional wake flow on an aero-acoustic field.

A Study on PIV Measurement of Multi-Channel Flow with Inclination angle (경사각을 갖는 다층채널 흐름의 PIV 계측에 관한 연구)

  • 조대환
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.153-158
    • /
    • 2000
  • Flow visualization and PIV measurements were conducted to investigate the flow characteristics of multi-channel with inclination angle. The water flow seeded with tiny vegetable powder as tracers revealed details of flow field. The PIV measurement to acquire multi-point velocity data simulatneously was carried out at three space of plates for 5, 10, and 15mm with variation of inlet flow rates of $0.25m^3/h$ and <$0.5m^3/h.$ Experiment results show that space of plates acts a significant role in separating process.

  • PDF

Physiological Dead Space and Shunt Following Open Heart Surgery (개심술후 폐의 Physiologic dead space 와 Shunt 의 변화상 추적)

  • 이길노
    • Journal of Chest Surgery
    • /
    • v.18 no.4
    • /
    • pp.771-779
    • /
    • 1985
  • It has been recognized that the proper matching of ventilation and perfusion within the lung is essential for the efficient exchange of gases following open heart surgery. Physiologic shunt reflects the amount of blood going to lung units with inadequate ventilation and these are also areas of the lung with adequate ventilation but inadequate blood flow. This can be quantified by measuring physiological dead space. From January to August 1985, The physiologic dead space and shunt during postoperative course had been taken in 30 patients of open heart surgery in Soonchunhyang University Hospital. Twenty cases had congenital heart disease and acquired valvular heart disease were noticed in 10 cases. The physiological dead space and shunt during postoperative periods were calculated and we made 5 items of conclusion: 1. There is high probability of ventilation-perfusion mismatch in the acquired heart disease group compared to the congenital group. 2. Duration of the CPB can exert significant influences in the physiological dead space but less in the shunt fraction. 3. There is positive relationship between Qs/Qt and Vd/Vt in the group B [CPB>90 min.] but less reliable in correlation. 4. Perfusion impairment is more significant in the diminished pulmonic blood flow group compared to the increased pulmonic blood flow [Qp/Qs>2.0] group. 5. There is no significant ventilation-perfusion mismatch within the lung during all postoperative courses.

  • PDF

A Study on the semantic network system of the line of flow appearing on the residential space of super high-rise apartments (초고층아파트 주거공간에 나타난 동선의 의미적 네트워크 체계에 관한 연구)

  • Yoon, Jae-Eun;Kim, Joo-Hee
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.3 s.62
    • /
    • pp.58-65
    • /
    • 2007
  • The residential space of super high-rise buildings, having a form of a huge three-dimensional vertical city, affect the residents psychologically and qualitatively according to the line of flow. Because of these affects, the system of the line of flows is a very important factor. In this study, we recognize the super high-rise apartment's line of flow as a semantic network system based on case studies. And we also understand the mutual relationship by analyzing each space to recognize what effect it does on the residential environment. Furthermore, to bring up a better semantic network system for super high-rise apartment's line of flows is our goal. According to the case studies, the semantic network of the line of flow consists of 3 parts: the functional network, economical network and unit network. The functional network is composed of the 'need' and 'has', while the economical network includes variable walls that can be changed following the user's taste and eccentric positioned living rooms that protect personal privacy. Therefore the economical network started to appear while the personal value changed according to the improvement of the social condition. Finally, the unit network is a network that effects each unit that has ambiguous boundaries due to the appropriate arrangement between transitional spaces. And the unit network is based on the functional network.

A NOTE ON THE RANK OF THE FLOW

  • Joseph Auslander;Kim, Young-Key
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.411-414
    • /
    • 1994
  • In this paper a flow will be a pair (X, T) where X is a compact Hausdorff space, and T is a homeomorphism of X onto X. We will usually but not always assume that X is a metric space. We sometimes suppress the homeomorphism T notationally, and just denote a flow by X. General references for the preliminary dynamical notations discussed in this section are [5] and [3]. (The latter should be used with care, since transformations are written on the right there.)(omitted)

  • PDF

An Experimental Study on Lift Force Generation Resulting from Spanwise Flow in Flapping Wings

  • Hong, Young-Sun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.86-103
    • /
    • 2006
  • Using a combination of force transducer measurement to quantify net lift force, high frame rate camera to quantify and subtract inertial contributions, and Digital Particle Image Velocimetry (DPIV) to calculate aerodynamic contributions in the spanwise plane, the contribution of spanwise flow to the generation of lift force in wings undergoing a pure flapping motion in hover is shown as a function of flapping angle throughout the flapping cycle. These experiments were repeated at various flapping frequencies and for various wing planform sizes for flat plate and span wise cambered wings. Despite the previous identification of the importance of span wise fluid structures in the generation of lift force in flapping wings throughout the existing body of literature, the direct contribution of spanwise flow to lift force generated has not previously been quantified. Therefore, in the same manner as commonly applied to investigate the chordwise lift distribution across an airfoil in flapping wings, spanwise flow due to bulk flow and rotational fluid dynamic mechanisms will be investigated to validate the existence of a direct component of the lift force originating from the flapping motion in the spanwise plane instead.

The Effect of a Hot-wire Supporter on the Flow Between Corotating Disks in Shroud (밀폐된 동시회전 디스크 유동장에 대한 열선 지지대의 영향)

  • Kong Dae-Wee;Joo Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.663-666
    • /
    • 2002
  • Hard disk drived (HDD) in computer are used extensively as data storage capacity. The trend in the computer industry to produce smaller disk drives rotating at higher speeds requires an improved understanding of fluid motion in the space between disks. The distribution of pressure disturbance on disks has relation to flow structure. To investigate the flow structure, time-resolved hot-wire measurements of the circumferential velocity component were obtained for the flow between the center pair of four disks of common radius $R_2$ coretating at angular velocity ${\Omega}$ in a fixed cylindrical enclosure. Hot-wire supporter acts as an obstruction in this case. The effects of rotating speed and size of hot-wire supporter diameter between disks on the flow driven by disks were investigated. Velocity spectra at the fixed space were measured to obtain the structure of inner and outer region in flow field.

  • PDF

Numerical Simulation of Unsteady Rotor Flow Using an Unstructured Overset Mesh Flow Solver

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.104-111
    • /
    • 2009
  • An unstructured overset mesh method has been developed for the simulation of unsteady flow fields around isolated rotors and rotor-fuselage configurations. The flow solver was parallelized for the efficient calculation of complicated flows requiring a large number of cells. A quasi-unsteady mesh adaptation technique was adopted to enhance the spatial accuracy of the solution and to better resolve the rotor wake. The method has been applied to calculate the flow fields around rotor-alone and rotor-fuselage configurations in forward flight. Validations were made by comparing the predicted results with those of measurements. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

Flow Field Analysis on the Stagnation Streamline of a Blunt Body

  • Lee, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • The hypersonic flow on the stagnation streamline of a blunt body is analyzed with quasi one-dimensional (1-D) Navier-Stokes equations approximated by adopting the local similarity to the two-dimensional (2-D)/axisymmetric Navier-Stokes equations. The governing equations are solved using the implicit finite volume method. The computational domain is confined from the stagnation point to the shock wave, and the shock fitting method is used to find the shock position. We propose a boundary condition at the shock, which employs the shock wave angle in the vicinity of the stagnation streamline using the shock shape correlation. As a result of numerical computation conducted for the hypersonic flow over a sphere, the proposed boundary condition is shown to improve the accuracy of the prediction of the shock standoff distance. The quasi 1-D Navier-Stokes code is efficient in computing time and is reliable for the flow analysis along the stagnation streamline and the prediction of heat flux at the stagnation point in the hypersonic blunt body flow.

Numerical Analysis on the Discharge Characteristics of a Liquid Rocket Engine Injector Orifice

  • Cho, Won-Kook;Kim, Young-Mog
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • A numerical analysis was performed on the fluid flow in injector orifice of a liquid rocket engine. The present computational code was verified against the published data for turbulent flow in a pipe with a sudden expansion-contraction. Considered were the parameters for the flow analysis in an injector orifice: Reynolds number, ratio of mass flow rate of the injector orifice and inlet flow rate, and slant angle of the injector orifice. The discharge coefficient increased slightly as the Reynolds number increased. The slant angle of the injector changed critically the discharge coefficient. The discharge coefficient increased by 7% when the slant angle changed from $-30^{\circ}$ to $30^{\circ}$ The ratio of mass flow rate had relatively little impact on the discharge coefficient.