• Title/Summary/Keyword: Flow map

Search Result 606, Processing Time 0.032 seconds

Diuretic Action of Vasopressin (바소프레신의 이뇨작용)

  • Go, Seok-Tae;Yun, Jae-Gyeong;Yu, Gang-Jun
    • YAKHAK HOEJI
    • /
    • v.40 no.4
    • /
    • pp.468-477
    • /
    • 1996
  • Vasopressin which is an antidiuretic hormone in human body produced the diuretic action in dog. This study was investigated in order to certify the diuretic action and to search out the mechanism of the action on the vasopressin. Vasopressin, when given in a dose of 10.0mU/kg, bolus+1.0mU/kg/min intravenously, exhibited the increase of urine flow(Vol), renal plasma flow(RPF), osmolar clearance (Cosm) and amounts of sodium and potassium excreted in urine ($E_{Na},\;E_K$), the decrease of reabsorption rate of sodium and potassium in renal tubules ($R_{Na},\;R_K$), and then elevated the mean arterial pressure(MAP). Vasopressin given in a increased dose to 30.0mU/kg, bolus+1.0mU/kg/min intravenously elicited the same aspect with that exhibited by a small dose in changes of Vol. and all renal function and potentiated the change rates, whereas this time MAP did not change at all when compared with control value. Vasopressin, when administered into a renal artery, did not induce the changes of Vol and all renal function in experimental (administered) kidney, but increased slightly the Vol, glomerular filtration rate(GFR), $E_{Na},\;and\;E_K$ expected the no change of $R_{Na}\;and\;R_K$ in the control (not administered) kidney. Vasopressin, when infused into carotid artery, showed the increase of Vol. GFR, $E_{Na},\;and\;E_K$ and no change of $R_{Na}\;and\;R_K$ in a dose of 1/5 of intravenous dose. Diuretic action of vasopressin administered into carotid artery was not influenced by renal denervation. Above results suggest that vasopressin produced diuretic action by hemodynamic changes in dogs. These hemodynamic changes may be mediated by central endogenous substances not associated with renal nerve.

  • PDF

Verification of Landslide Hazard using RS and GIS Methods (RS와 GIS 기법을 활용한 산사태 위험성의 검증)

  • Cho, Nam-Chun;Choi, Chul-Uong;Jeon, Seong-Woo;Han, Kyung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.54-66
    • /
    • 2006
  • Korea Forest Service made the landslide hazard map for all mountainous districts over the country in May 2005. In this study, we selected landslide areas occurred in Jeonbuk from 02 August 2005 to 03 August 2005 as the study area. We extracted landslide areas using images taken by PKNU 3 System, which was developed by PE&RS Laboratory in Dept. of Satellite Information Sciences, Pukyong National University and verified the accuracy of landslide hazard map by overlaying landslide hazard areas extracted by PKNU 3 images. And we analyzed characteristics of an altitude, a gradient, an inclined direction, a flow length, a flow accumulation for landslide areas using mountainous terrain analysis and Stream Network analysis of ArvView 3.3. As a result of this study, it is necessary to adjust the unitage(%) by the class and to modify and improve the score table for prediction of landslide-susceptible area forming the foundation of making the landslide hazard maps.

  • PDF

Collision Avoidance Using Omni Vision SLAM Based on Fisheye Image (어안 이미지 기반의 전방향 영상 SLAM을 이용한 충돌 회피)

  • Choi, Yun Won;Choi, Jeong Won;Im, Sung Gyu;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.210-216
    • /
    • 2016
  • This paper presents a novel collision avoidance technique for mobile robots based on omni-directional vision simultaneous localization and mapping (SLAM). This method estimates the avoidance path and speed of a robot from the location of an obstacle, which can be detected using the Lucas-Kanade Optical Flow in images obtained through fish-eye cameras mounted on the robots. The conventional methods suggest avoidance paths by constructing an arbitrary force field around the obstacle found in the complete map obtained through the SLAM. Robots can also avoid obstacles by using the speed command based on the robot modeling and curved movement path of the robot. The recent research has been improved by optimizing the algorithm for the actual robot. However, research related to a robot using omni-directional vision SLAM to acquire around information at once has been comparatively less studied. The robot with the proposed algorithm avoids obstacles according to the estimated avoidance path based on the map obtained through an omni-directional vision SLAM using a fisheye image, and returns to the original path. In particular, it avoids the obstacles with various speed and direction using acceleration components based on motion information obtained by analyzing around the obstacles. The experimental results confirm the reliability of an avoidance algorithm through comparison between position obtained by the proposed algorithm and the real position collected while avoiding the obstacles.

Flood Runoff Analysis using a Distributed Rainfall Runoff Model (분포형 유출모형을 이용한 홍수유출해석)

  • Jo, Hong-Je;Jo, In-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.199-208
    • /
    • 1998
  • This study is on the application of TOPMDEL(Topographic based hydrologic model) Which is a distributed rainfall-runoff model to the flood runoff analysis. The test area was Wichun experimental catchment site which is mountainous mid-area (Dongok, 33.63$\textrm{km}^2$ and Goro, 109,725 $\textrm{km}^2$) and being operated by the Ministry of Construction and ransporation. A three-dimensional digital elevation model(DEM) map was constructed using a physiographic map(1/25,000) and GIS software, Arc/Info, was used to the analysis of geofraphic factors. The topographic index of Dongok and Goro subcatchment was similar. As a results of the analysis, the model was validated that the simulated peak flow of a flood runoff was fit to the observed data. For the analysis of the effects of grid size, Dongok subcatchment was divided into 100,120-,240 m grid and Goro subcatchment was divided into grid and 120,200,350 m grid. It was shown that the peak flow increased in proportion to the increases of the grid size, but peak times were constant regardless of the grid size in both of the watershed.

  • PDF

Prediction of Cavitation Intensity in Pumps Based on Propagation Analysis of Bubble Collapse Pressure Using Multi-Point Vibration Acceleration Method

  • Fukaya, Masashi;Ono, Shigeyoshi;Udo, Ryujiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • We developed a 'multi-point vibration acceleration method' for accurately predicting the cavitation intensity in pumps. Pressure wave generated by cavitation bubble collapse propagates and causes pump vibration. We measured vibration accelerations at several points on a casing, suction and discharge pipes of centrifugal and mixed-flow pumps. The measured vibration accelerations scattered because the pressure wave damped differently between the bubble collapse location and each sensor. In a conventional method, experimental constants are proposed without evaluating pressure propagation paths, then, the scattered vibration accelerations cause the inaccurate cavitation intensity. In our method, we formulated damping rate, transmittance of the pressure wave, and energy conversion from the pressure wave to the vibration along assumed pressure propagation paths. In the formulation, we theoretically defined a 'pressure propagation coefficient,' which is a correlation coefficient between the vibration acceleration and the bubble collapse pressure. With the pressure propagation coefficient, we can predict the cavitation intensity without experimental constants as proposed in a conventional method. The prediction accuracy of cavitation intensity is improved based on a statistical analysis of the multi-point vibration accelerations. The predicted cavitation intensity was verified with the plastic deformation rate of an aluminum sheet in the cavitation erosion area of the impeller blade. The cavitation intensities were proportional to the measured plastic deformation rates for three kinds of pumps. This suggests that our method is effective for estimating the cavitation intensity in pumps. We can make a cavitation intensity map by conducting this method and varying the flow rate and the net positive suction head (NPSH). The map is useful for avoiding the operating conditions having high risk of cavitation erosion.

A Study on the extraction of hydrologic-Model input parameter using GSIS (GSIS를 이용한 수문모형 입력매개변수 추출에 관한 연구)

  • Lee, Geung-Sang;Chae, Hyo-Seok;Park, Jeong-Nam;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.2 s.16
    • /
    • pp.11-22
    • /
    • 2000
  • It needs to extract the accurate topological characteristics and hydrological parameters of watershed in order to manage water resource efficiently. But, these data are processed yet by manual wok and simple operation in hydrologic fields. In this paper, we presented algorithm that could extract topological characteristics and hydrological parameters over watershed using GSIS and it gives the saving of data processing tin and the confidency of data. We presented coupling method between GSIS and hydrologic model by using extracted parameters into the input parameter of HEC-HMS hydrologic model. The extraction procedure of topological characteristics and hydrological parameters is as below. First, watershed and stream are extracted by DEM and curve unmber is extracted throughout the overlay of landuse map and soil map. Also, we extracted surface parameters like the length of the longest flow path and the slope of the longest flow path by Grid computation into watershed and stream. And we gave the method that could extract hydrologic parameters like Muskingum K and sub-basin lag tin by executing computation into surface parameters and average Sn curve number being extracted.

  • PDF

Comparative Analysis of Subsurface Estimation Ability and Applicability Based on Various Geostatistical Model (다양한 지구통계기법의 지하매질 예측능 및 적용성 비교연구)

  • Ahn, Jeongwoo;Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.31-44
    • /
    • 2014
  • In the present study, a few of recently developed geostatistical models are comparatively studied. The models are two-point statistics based sequential indicator simulation (SISIM) and generalized coupled Markov chain (GCMC), multi-point statistics single normal equation simulation (SNESIM), and object based model of FLUVSIM (fluvial simulation) that predicts structures of target object from the provided geometric information. Out of the models, SNESIM and FLUVSIM require additional information other than conditioning data such as training map and geometry, respectively, which generally claim demanding additional resources. For the comparative studies, three-dimensional fluvial reservoir model is developed considering the genetic information and the samples, as input data for the models, are acquired by mimicking realistic sampling (i.e. random sampling). For SNESIM and FLUVSIM, additional training map and the geometry data are synthesized based on the same information used for the objective model. For the comparisons of the predictabilities of the models, two different measures are employed. In the first measure, the ensemble probability maps of the models are developed from multiple realizations, which are compared in depth to the objective model. In the second measure, the developed realizations are converted to hydrogeologic properties and the groundwater flow simulation results are compared to that of the objective model. From the comparisons, it is found that the predictability of GCMC outperforms the other models in terms of the first measure. On the other hand, in terms of the second measure, the both predictabilities of GCMC and SNESIM are outstanding out of the considered models. The excellences of GCMC model in the comparisons may attribute to the incorporations of directional non-stationarity and the non-linear prediction structure. From the results, it is concluded that the various geostatistical models need to be comprehensively considered and comparatively analyzed for appropriate characterizations.

Three-Dimensional Conversion of Two-Dimensional Movie Using Optical Flow and Normalized Cut (Optical Flow와 Normalized Cut을 이용한 2차원 동영상의 3차원 동영상 변환)

  • Jung, Jae-Hyun;Park, Gil-Bae;Kim, Joo-Hwan;Kang, Jin-Mo;Lee, Byoung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • We propose a method to convert a two-dimensional movie to a three-dimensional movie using normalized cut and optical flow. In this paper, we segment an image of a two-dimensional movie to objects first, and then estimate the depth of each object. Normalized cut is one of the image segmentation algorithms. For improving speed and accuracy of normalized cut, we used a watershed algorithm and a weight function using optical flow. We estimate the depth of objects which are segmented by improved normalized cut using optical flow. Ordinal depth is estimated by the change of the segmented object label in an occluded region which is the difference of absolute values of optical flow. For compensating ordinal depth, we generate the relational depth which is the absolute value of optical flow as motion parallax. A final depth map is determined by multiplying ordinal depth by relational depth, then dividing by average optical flow. In this research, we propose the two-dimensional/three-dimensional movie conversion method which is applicable to all three-dimensional display devices and all two-dimensional movie formats. We present experimental results using sample two-dimensional movies.

Knowledge graph-based knowledge map for efficient expression and inference of associated knowledge (연관지식의 효율적인 표현 및 추론이 가능한 지식그래프 기반 지식지도)

  • Yoo, Keedong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.49-71
    • /
    • 2021
  • Users who intend to utilize knowledge to actively solve given problems proceed their jobs with cross- and sequential exploration of associated knowledge related each other in terms of certain criteria, such as content relevance. A knowledge map is the diagram or taxonomy overviewing status of currently managed knowledge in a knowledge-base, and supports users' knowledge exploration based on certain relationships between knowledge. A knowledge map, therefore, must be expressed in a networked form by linking related knowledge based on certain types of relationships, and should be implemented by deploying proper technologies or tools specialized in defining and inferring them. To meet this end, this study suggests a methodology for developing the knowledge graph-based knowledge map using the Graph DB known to exhibit proper functionality in expressing and inferring relationships between entities and their relationships stored in a knowledge-base. Procedures of the proposed methodology are modeling graph data, creating nodes, properties, relationships, and composing knowledge networks by combining identified links between knowledge. Among various Graph DBs, the Neo4j is used in this study for its high credibility and applicability through wide and various application cases. To examine the validity of the proposed methodology, a knowledge graph-based knowledge map is implemented deploying the Graph DB, and a performance comparison test is performed, by applying previous research's data to check whether this study's knowledge map can yield the same level of performance as the previous one did. Previous research's case is concerned with building a process-based knowledge map using the ontology technology, which identifies links between related knowledge based on the sequences of tasks producing or being activated by knowledge. In other words, since a task not only is activated by knowledge as an input but also produces knowledge as an output, input and output knowledge are linked as a flow by the task. Also since a business process is composed of affiliated tasks to fulfill the purpose of the process, the knowledge networks within a business process can be concluded by the sequences of the tasks composing the process. Therefore, using the Neo4j, considered process, task, and knowledge as well as the relationships among them are defined as nodes and relationships so that knowledge links can be identified based on the sequences of tasks. The resultant knowledge network by aggregating identified knowledge links is the knowledge map equipping functionality as a knowledge graph, and therefore its performance needs to be tested whether it meets the level of previous research's validation results. The performance test examines two aspects, the correctness of knowledge links and the possibility of inferring new types of knowledge: the former is examined using 7 questions, and the latter is checked by extracting two new-typed knowledge. As a result, the knowledge map constructed through the proposed methodology has showed the same level of performance as the previous one, and processed knowledge definition as well as knowledge relationship inference in a more efficient manner. Furthermore, comparing to the previous research's ontology-based approach, this study's Graph DB-based approach has also showed more beneficial functionality in intensively managing only the knowledge of interest, dynamically defining knowledge and relationships by reflecting various meanings from situations to purposes, agilely inferring knowledge and relationships through Cypher-based query, and easily creating a new relationship by aggregating existing ones, etc. This study's artifacts can be applied to implement the user-friendly function of knowledge exploration reflecting user's cognitive process toward associated knowledge, and can further underpin the development of an intelligent knowledge-base expanding autonomously through the discovery of new knowledge and their relationships by inference. This study, moreover than these, has an instant effect on implementing the networked knowledge map essential to satisfying contemporary users eagerly excavating the way to find proper knowledge to use.

Chaotic Behavior of 2-Dimensional Airfoil in Incompressible Flow (비압축성 유동장내 2차원 익형의 혼돈거동)

  • 정성원;이동기;이상환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.495-508
    • /
    • 1995
  • The self-excited vibrations of airfoil is related to the classical flutter problems, and it has been studied as a system with linear stiffness and small damping. However, since the actual aircraft wing and the many mechanical elements of airfoil type have various design variables and parameters, some of these could have strong nonlinearities, and the nonlinearities could be unexpectedly strong as the parameters vary. This abrupt chaotic behavior undergoes ordered routes, and the behaviors after these routes are uncontrollable and unexpectable since it is extremely sensitive to initial conditions. In order to study the chaotic behavior of the system, three parameters are considered, i.e., free-stream velocity, elastic distance and zero-lift angle. If the chaotic parameter region can be identified from the mathematically modeled nonlinear differential equation system, the designs which avoid chaotic regions could be suggested. In this study, by using recently developed dynamically system methods, and chaotic regions on the parameter plane will be found and the safe design variables will be suggested.