• Title/Summary/Keyword: Flow limit

Search Result 921, Processing Time 0.032 seconds

A Study on the Fouling of Ultrafiltration Membranes Used in the Treatment of an Acidic Solution in a Circular Cross-flow Filtration Bench (순환식 막 모듈 여과장치를 이용한 산성용액의 수처리 공정 시 발생하는 한외여과막 오염에 관한 연구)

  • Kim, Nam-Joon;Choi, Chang-Min;Choi, Yong-Hun;Lee, Jun-Ho;Kim, Hwan-Jin;Park, Byung-Jae;Joo, Young-Kil;Kang, Jin-Seok;Paik, Youn-Kee
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.252-260
    • /
    • 2009
  • The effects of the treatment of an acidic solution at pH 2 on polyacrylonitrile ultrafiltration (UF) membranes were investigated using a circular cross-flow filtration bench with a membrane module. A substantial reduction in the membrane permeability was observed after 80 hours' treatment of the acidic solution. In addition, the analyses of the sample solutions by ultraviolet/visible absorption spectroscopy and gas chromatography/mass spectrometry (GC/MS), which were taken from the feed tank as a function of the treatment time, showed that a new organic compound was produced in the course of the treatment. From a thorough search of the mass spectral library we presumed the new compound to be 1,6-dioxacyclododecane-7,12-dione (DCD), one of the well-known additives for polyurethane. Based on further experimental results, including the scanning electron microscope (SEM) images and the solid-state NMR spectra of the membranes used for the treatment of the acidic solution, we suggested that the decrease of the permeate flux resulted not from the deformation of the membranes, but from the fouling by DCD eluted from the polyurethane tubes in the filtration bench during the treatment. Those results imply that the reactivity to an acidic solution of the parts comprising the filtration bench is as important as that of the membranes themselves for effective treatments of acidic solutions, for efficient chemical cleaning by strong acids, and also in determining the pH limit of the solutions that can be treated by the membranes.

An Analysis into the Characteristics of the High-pass Transportation Data and Information Processing Measures on Urban Roads (도시부도로에서의 하이패스 교통자료 특성분석 및 정보가공방안)

  • Jung, Min-Chul;Kim, Young-Chan;Kim, Dong-Hyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.74-83
    • /
    • 2011
  • The high-pass transportation information system directly collects section information by using probe cars and therefore can offer more reliable information to drivers. However, because the running condition and features of probe cars and statistical processing methods affect the reliability of the information and particularly because the section travel time is greatly influenced by whether there has been delay by signals on urban roads or not, there can be much deviation among the collected individual probe data. Accordingly, researches in multilateral directions are necessary in order to enhance the credibility of the section information. Yet, the precedent studies related to high-pass information provision have been conducted on the highway sections with the feature of continuous flow, which has a limit to be applied to the urban roads with the transportational feature of an interrupted flow. Therefore, this research aims at analyzing the features of high-pass transportation data on urban roads and finding a proper processing method. When the characteristics of the high-pass data on urban roads collected from RSE were analyzed by using a time-space diagram, the collected data was proved to have a certain pattern according to the arriving cars' waiting for signals with the period of the signaling cycle of the finish node. Moreover, the number of waiting for signals and the time of waiting caused the deviation in the collected data, and it was bigger in traffic jam. The analysis result showed that it was because the increased number of waiting for signals in traffic jam caused the deviation to be offset partially. The analysis result shows that it is appropriate to use the mean of this collected data of high-pass on urban roads as its representative value to reflect the transportational features by waiting for signals, and the standard of judgment of delay and congestion needs to be changed depending on the features of signals and roads. The results of this research are expected to be the foundation stone to improve the reliability of high-pass information on urban roads.

Scaling up of single fracture using a spectral analysis and computation of its permeability coefficient (스펙트럼 분석을 응용한 단일 균열 규모확장과 투수계수 산정)

  • 채병곤
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.29-46
    • /
    • 2004
  • It is important to identify geometries of fracture that act as a conduit of fluid flow for characterization of ground water flow in fractured rock. Fracture geometries control hydraulic conductivity and stream lines in a rock mass. However, we have difficulties to acquire whole geometric data of fractures in a field scale because of discontinuous distribution of outcrops and impossibility of continuous collecting of subsurface data. Therefore, it is needed to develop a method to describe whole feature of a target fracture geometry. This study suggests a new approach to develop a method to characterize on the whole feature of a target fracture geometry based on the Fourier transform. After sampling of specimens along a target fracture from borehole cores, effective frequencies among roughness components were selected by the Fourier transform on each specimen. Then, the selected effective frequencies were averaged on each frequency. Because the averaged spectrum includes all the frequency profiles of each specimen, it shows the representative components of the fracture roughness of the target fracture. The inverse Fourier transform is conducted to reconstruct an averaged whole roughness feature after low pass filtering. The reconstructed roughness feature also shows the representative roughness of the target subsurface fracture including the geometrical characteristics of each specimen. It also means that overall roughness feature by scaling up of a fracture. In order to identify the characteristics of permeability coefficients along the target fracture, fracture models were constructed based on the reconstructed roughness feature. The computation of permeability coefficient was performed by the homogenization analysis that can calculate accurate permeability coefficients with full consideration of fracture geometry. The results show a range between $10^{-4}{\;}and{\;}10^{-3}{\;}cm/sec$, indicating reasonable values of permeability coefficient along a large fracture. This approach will be effectively applied to the analysis of permeability characteristics along a large fracture as well as identification of the whole feature of a fracture in a field scale.

Improvement of turbid water prediction accuracy using sensor-based monitoring data in Imha Dam reservoir (센서 기반 모니터링 자료를 활용한 임하댐 저수지 탁수 예측 정확도 개선)

  • Kim, Jongmin;Lee, Sang Ung;Kwon, Siyoon;Chung, Se Woong;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.931-939
    • /
    • 2022
  • In Korea, about two-thirds of the precipitation is concentrated in the summer season, so the problem of turbidity in the summer flood season varies from year to year. Concentrated rainfall due to abnormal rainfall and extreme weather is on the rise. The inflow of turbidity caused a sudden increase in turbidity in the water, causing a problem of turbidity in the dam reservoir. In particular, in Korea, where rivers and dam reservoirs are used for most of the annual average water consumption, if turbidity problems are prolonged, social and environmental problems such as agriculture, industry, and aquatic ecosystems in downstream areas will occur. In order to cope with such turbidity prediction, research on turbidity modeling is being actively conducted. Flow rate, water temperature, and SS data are required to model turbid water. To this end, the national measurement network measures turbidity by measuring SS in rivers and dam reservoirs, but there is a limitation in that the data resolution is low due to insufficient facilities. However, there is an unmeasured period depending on each dam and weather conditions. As a sensor for measuring turbidity, there are Optical Backscatter Sensor (OBS) and YSI, and a sensor for measuring SS uses equipment such as Laser In-Situ Scattering and Transmissometry (LISST). However, in the case of such a high-tech sensor, there is a limit due to the stability of the equipment. Therefore, there is an unmeasured period through analysis based on the acquired flow rate, water temperature, SS, and turbidity data, so it is necessary to develop a relational expression to calculate the SS used for the input data. In this study, the AEM3D model used in the Water Resources Corporation SURIAN system was used to improve the accuracy of prediction of turbidity through the turbidity-SS relationship developed based on the measurement data near the dam outlet.

Studies on the Hemodynamic Changes in Cirrhosis of the Liver (간경변증(肝硬變症)에서의 혈역학적(血力學的) 변화(變化)에 관(關)한 연구(硏究))

  • Kim, Jung-Il;Lee, Jung-Sang;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.4 no.2
    • /
    • pp.11-27
    • /
    • 1970
  • Cardiac output, plasma volume and renal plasma flow were determined to evaluate hemodynamic changes in 29 patients with cirrhosis of the liver. The results obtained were as follows. 1. The mean plasma volume was 3793+895ml and it was significantly higher than the normal controls. The mean blood volume ($5266{\pm}1222ml$) and blood volume per kg body weight ($95.7{\pm}23.41ml$) were also increased significantly. The mean plasma volume per kg body weight ($69.1{\pm}19.1ml$) showed increased tendency and the mean difference between blood volume and plasma volume per kg body weight ($26.4{\pm}7.05ml$) was in lower limit of normal range. 2. The mean cardiac output was $7708{\pm}2652ml/min$ and it was significantly increased. The mean cardiac index ($4924{\pm}1998ml/min/M^2$), stroke volume ($96.2{\pm}34.2ml/beat$), stroke index ($62.3{\pm}27.34ml/M^2$) and fractional cardiac index ($1.54{\pm}0.577$) were also increased significantly. The mean total -peripheral resistance was $1664{\pm}753.8\;dynes\;sec\;cm^{-5}M^2$ and it was significantly lower than the normal controls. 3. The mean renal plasma flow was $537{\pm}146.8ml/min/1.73M^2$ and it was normal to decreased tendency. The mean endogenous creatinine clearance ($66.7{\pm}23.0ml/min/1.73M^2$) was significantly decreased. Filtration fraction was variable, but it was slightly lower than normal in most cases. The mean renal fraction of cardiac output ($11.4{\pm}6.27%$) was relatively decreased. 4. Although renal plasma flow was normal or decreased in general, it was definitely diminished in patients with creatinine clearance less than $60ml/min/1.73M^2$, resistant ascites, and signs of azotemia (elevated BUN and serum creatinine). 5. Diminished glomrular filtration rate with low filtration fraction and decreased renal fraction of cardiac output observed strongly supported increased renal afferent arteriolar resistance. 6. Renal circulatory impairment preceded azotemia or oroliguria in cirrhosis. 7. Clinical findigns and liver function were not correlated with hemodynamic changes, except for esophageal varices associated with high cardiac output obsedved. 8. No definite correlation of renal hemodynamics with plasma volume or cardiac output was found.

  • PDF

A Rheological Study on Creep Behavior of Clays (점토(粘土)의 Creep 거동(擧動)에 관한 유변학적(流變學的) 연구(研究))

  • Lee, Chong Kue;Chung, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1981
  • Most clays under sustained load exhibit time-dependent deformation because of creep movement of soil particles and many investigators have attempted to relate their findings to the creep behavior of natural ground and to the long-term stability of slopes. Since the creep behavior of clays may assume a variety of forms depending on such factors as soil plasticity, activity and water content, it is difficult and complicated to analyse the creep behavior of clays. Rheological models composed of linear springs in combination with linear or nonlinear dashpots and sliders, are generally used for the mathematical description of the time-dependent behavior of soils. Most rheological models, however, have been proposed to simulate the behavior of secondary compression for saturated clays and few definitive data exist that can evaluate the behavior of non-saturated clays under the action of sustained stress. The clays change gradually from a solid state through plastic state to a liquid state with increasing water content, therefore, the rheological models also change. On the other hand, creep is time-dependent, and also the effect of thixotropy is time-function. Consequently, there may be certain correlations between creep behavior and the effects of thixotropy in compacted clays. In addition, the states of clay depend on water content and hence the height of the specimen under drained conditions. Futhermore, based on present and past studies, because immediate elastic deformation occurs instantly after the pressure increment without time-delayed behavior, the factor representing immediate elastic deformations in the rheological model is necessary. The investigation described in this paper, based on rheological model, is designed to identify the immediate elastic deformations and the effects of thixotropy and height of clay specimens with varing water content and stress level on creep deformations. For these purposes, the uniaxial drain-type creep tests were performed. Test results and data for three compacted clays have shown that a linear top spring is needed to account for immediate elastic deformations in the rheological model, and at lower water content below the visco-plastic limit, the effects of thixotropy and height of clay specimens can be represented by the proposed rheological model not considering the effects. Therefore, the rheological model does not necessitate the other factors representing these effects. On the other hand, at water content higher than the visco-plastic limit, although the state behavior of clays is visco-plastic or viscous flow at the beginning of the test, the state behavior, in the case of the lower height sample, does not represent the same behavior during the process of the test, because of rapid drainage. In these cases, the rheological model does not coincide with the model in the case of the higher specimens.

  • PDF

Establishment of an Analytical Method for Prometryn Residues in Clam Using GC-MS (GC-MS를 이용한 바지락 중 prometryn 잔류분석법 확립)

  • Chae, Young-Sik;Cho, Yoon-Jae;Jang, Kyung-Joo;Kim, Jae-Young;Lee, Sang-Mok;Chang, Moon-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.531-536
    • /
    • 2013
  • We developed a simple, sensitive, and specific analytical method for prometryn using gas chromatography-mass spectrometry (GC-MS). Prometryn is a selective herbicide used for the control of annual grasses and broadleaf weeds in cotton and celery crops. On the basis of high specificity, sensitivity, and reproducibility, combined with simple analytical operation, we propose that our newly developed method is suitable for use as a Ministry of Food and Drug Safety (MFDS, Korea) official method in the routine analysis of individual pesticide residues. Further, the method is applicable in clams. The separation condition for GC-MS was optimized by using a DB-5MS capillary column ($30m{\times}0.25mm$, 0.25 ${\mu}m$) with helium as the carrier gas, at a flow rate of 0.9 mL/min. We achieved high linearity over the concentration range 0.02-0.5 mg/L (correlation coefficient, $r^2$ >0.998). Our method is specific and sensitive, and has a quantitation limit of 0.04 mg/kg. The average recovery in clams ranged from 84.0% to 98.0%. The reproducibility of measurements expressed as the coefficient of variation (CV%) ranged from 3.0% to 7.1%. Our analytical procedure showed high accuracy and acceptable sensitivity regarding the analytical requirements for prometryn in fishery products. Finally, we successfully applied our method to the determination of residue levels in fishery products, and showed that none of the analyzed samples contained detectable amounts of residues.

Feasibility Test of Biohydrogen Production from Food Waste (음식물쓰레기의 수소발효 타당성 평가)

  • Han, Sun-Kee;Kim, Sang-Hyoun;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.87-95
    • /
    • 2003
  • Although extensive studies were conduced on hydrogen fermentation of organic wastewaters, little is known about biohydrogen production from organic solid wastes. The leaching-bed reactor treating food waste by heat-shocked anaerobic sludge was, therefore, operated at D of 2.1, 3.6, 4.5 and $5.5d^{-1}$ to find optimal D for hydrogen production. Successful operation of a reactor can be accomplished when it is operated at proper dilution rate (D). Operation at high D leads to the washout of biomass in the reactor while operation at low D leads to product inhibition due to the accumulation of excess VFA. These appear to limit the production of hydrogen to reach a higher level. All the reactors showed that, on day 1-3, hydrogen production was dominant and VFA concentration was higher than ethanol. Butyrate and acetate were major components of VFAs over the whole operation, though lactate was very high on day 1-2. Compared with other D values, D of $4.5d^{-1}$, resulted in higher butyrate/acetae (B/A) ratios during the fermentation. The trend of B/A ratios was similar to the hydrogen production, suggesting that butyrate formation favored hydrogen production. Ethanol increased significantly from day 4 when hydrogen Production stopped. It indicated that heat-shocked sludge was able to induce a metabolic flow from hydrogen-and acid-producing pathway to solvent-producing pathway. Operation at D of $4.5d^{-1}$ led to higher fermentation efficiency (58%) than those (51.5, 55.3 and 53.7%) at 2.1, 3.6 and $5.5d^{-1}$. The COD removed was convened to hydrogen (10.1%), VFA (30.9%), and ethanol (17.0%).

  • PDF

The Agreements between FEV1 and PEFR in the Patients of Mild Bronchial Asthma (외래 진료가 가능한 경증 천식 환자에서 1초간 노력성 호기량(FEV1)과 최대 호기유속(PEFR)간의 연관성)

  • Chang, Won Chul;Kim, Byung Kook;Kim, Soon Jong;Yoo, Kwang Ha;Lee, Tae-Hun;Lee, Jung Yeon;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.6
    • /
    • pp.638-643
    • /
    • 2005
  • Background : Several studies have shown considerable disagreement when using the $FEV_1$ and PEFR to assess the severity of an airflow obstruction. A differential classification of the severity of asthma would lead to serious differences in the evaluation and management of asthma. The aim of this study was to examine the relationship between the $FEV_1$ and PEFR in asthma patients with mild symptoms. Methods : In this study, the PEFR and $FEV_1$ were obtained from 92 adult asthma patients with mild symptoms attending an outpatient pulmonary clinic. The mean differences and the limits of agreement in the paired measurements of the $FEV_1$ and PEFR were calculated. Results : There was a considerable correlation between the $FEV_1$ and PEFR measurements when expressed as a % of the predicted values (r=0.686, p<0.01). The 95% limit of agreement (mean difference ${\pm}1.96SD$) between the $FEV_1$ % and PEFR % were acceptable(-27.4%~33.8%). In addition, the weighted ${\kappa}$(kappa) coefficient for the agreement between the $FEV_1$ % and PEFR % was 0.74 (95% CI, 0.63-0.81), indicating excellent agreement between the two measurements. Conclusion : The spirometer ($FEV_1$) and the Mini-Wright peak flow meter (PEFR) can be used interchangeably in adult asthma patients with mild symptom.

Changes of Salt Concentration by the Height of Ground Water Table on Disused Saltpan for Golf Course Construction Site (골프코스를 조성할 폐염전 매립지의 지하수위에 따른 토양산도 및 전기전도도 변화)

  • Lee, Dong-Ik;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.143-150
    • /
    • 2009
  • High salt concentration is one of the most important limit factor on plant growth at a disused saltpan for golf course construction site. The control of salt in soil is definitely required and the monitoring of salt concentration in soil and ground water also required to amend soil physiochemical properties. This research was carried out to monitor the pH and salt concentration changes by the height of ground water. By the physiochemical analysis test, the soil contains a high salt concentration and classified as a slight alkaline clay soil. The height of ground water table changed to 1.3m, 3.3m and 2.8m at dry season(mid-late June, 2005), monsoon season(early-mid July) and after monsoon(late July), respectively. Compare to the average ground level of 2.9m, the ground water was over flooded about OAm at monsoon season. The electrical conductivity(ECe) was measured above $4.0dS{\cdot}m^{-1}$ over all areas and however, some areas showed over $20dS{\cdot}m^{-1}$. During a monsoon season, ECe was lowered to $1.2{\sim}15.0dS{\cdot}m^{-1}$, compared with those of the dry season. Therefore, the interception of the capillary connection between planting layer and ground water which contains high salt concentration should be adapted when golf courses are constructed on disused saltpan. The phytotoxicity caused by salt damage may be controled by the interception of capillary fringe of salt flow to the topsoil profile at the upper layer of the ground water table.