• 제목/요약/키워드: Flow induced vibration

검색결과 447건 처리시간 0.024초

Numerical analysis of oscillating square cylinder with corner radius

  • Tong, J.F.;Sohn, C.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.316-320
    • /
    • 2008
  • In this paper, the near wake of stationary and transversely oscillating square section cylinders with different corner radii are studied by numerical method to investigate the influence of corner radius. Six models R/D=0,0.1,0.2,0.3,0.4,0.5 (R is the corner radius and D is the characteristic dimension of the body) were studied. It was found that the corner radius of square cylinder significantly influences the flow features around the body both in stationary and oscillating conditions. Results indicate that, as R/D ratio increases, the Strouhal number increases and the separation point decrease for the stationary and oscillating cases.

  • PDF

유체감쇠 커플링의 동특성에 관한 이론적 연구(I) (A Theoretical Study on the Dynamic Characteristics of Damping Flexible Coupling(I))

  • 김종수;제양규;정재현;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.11-22
    • /
    • 1994
  • The present works are the theoretical results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. It is established the analysis scheme of the multiple-leaf spring, to obtain the static coefficient of stiffness of the coupling. Also, the dynamic coefficient of stiffness and the damping coefficient of the coupling are indentified through the flow analysis for a induced flow of working fluid by the deflection of multiple-leaf springs. This paper dealt with damping contributions by the friction between each plate of the multiple-leaf spring. In this paper, it is found that the dynamic characteristics of the damping flexible coupling are strongly dependent on the stiffness and the number of the multiple-leaf spring, and also vary with the viscosity of working fluid and the vibration speed of the inner star.

  • PDF

복소음향 인텐시티법을 이용한 소음원검출의 시뮬레이션 및 실차응용 (Computer Simulation for Noise Source Identification and Application to Vehicle Using Complex Acoustic Intensity Method)

  • 오재웅;김상헌;안지훈
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.171-171
    • /
    • 1997
  • Sound intensity distributions and energy flow in the near field of dipole source system and flat plate were investigated. First, the effectiveness of complex acoustic intensity was proved by using mathmatical and experimental methods in order to indentify noise sources and transmission paths of dipole field which is effected by the presence of neighbouring coherent sources. Next, analytical complex acoustic intensity method was discussed and the characteristics and energy flow of sound induced from the plate are clarified. The velocity of plate obtained from Finite Element Method was used for calculation of complex acoustic intensity in the near field. Finally experimental complex acoustic intensity method was applied to a passenger car. It can be seen that complex acoustic intensity method using both of active and reactive intensity is vital in devising a strategy for the identification and the reduction of vibration and noise.

복소음향 인텐시티법을 이용한 소음원검출의 시뮬레이션 및 실차응용 (Computer Simulation for Noise Source Identification and Application to Vehicle Using Complex Acoustic Intensity Method)

  • 오재응;김상헌;안지훈
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.159-171
    • /
    • 1997
  • Sound intensity distributions and energy flow in the near field of dipole source system and flat plate were investigated. First, the effectiveness of complex acoustic intensity was proved by using mathmatical and experimental methods in order to inden- tify noise sources and transmission paths of dipole field which is effected by the presence of neighbouring coherent sources. Next, analytical complex acoustic intensity method was discussed and the characteristics and energy flow of sound induced from the plate are clarified. The velocity of plate obtained from Finite Element Method was used for calculation of complex acoustic intensity in the near field. Finally experimental complex acoustic intensity method using both of active and reactive intensity is vital in devising a strategy for the identification and the reduction of vibration and noise.

  • PDF

A noble RBC aggregometer with vibration-induced disaggregation mechanism

  • Shin S.;Jang J.H.;Park M.S.;Ku Y.H.;Suh J.S.
    • Korea-Australia Rheology Journal
    • /
    • 제17권1호
    • /
    • pp.9-13
    • /
    • 2005
  • The aggregation of red blood cells (RBCs) is a major determinant of blood flow resistance passing through various veins. Available techniques for measuring RBC aggregation often require pretreating and washing after each measurement, which is not optimal for day-to-day clinical use. A laser reflection technique has been combined with a vibration-aided disaggregation mechanism, which shows significant advances in aggregometer design, operation and data analysis. The essential features of this design are in its simplicity and a disposable element that is in contact with the blood sample. Using extremely small quantities of blood, the RBCs subjected to vibrations can be quickly and completely disaggregated. This is followed by measuring the backscattered light intensity. The measurements with the present sensor were compared with those of a commercial aggregometer and a strong correlation was found between them. The newly-developed optical aggregometer can measure the RBC aggregability difference between young and old cell suspension with ease and accuracy.

교량 구조물의 유체유발 진동해석 (Flow-induced Vibration Analysis of Bridge Girder Section)

  • 박성종;권혁준;이인;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제14권5호
    • /
    • pp.402-409
    • /
    • 2004
  • Numerical analysis of static and dynamic wind effects on civil engineering structures was performed. Long-span suspension bridges are flexible structures that are highly sensitive to the action of the wind. Aerodynamic effect often becomes a governing factor in the design process of bridges and aeroelastic stability boundary becomes a prime criterion which should be confirmed during the structural design stage of bridges because the long-span suspension bridges are prone to the aerodynamic instabilities caused by wind. If the wind velocity exceeds the critical velocity that the bridge can withstand, then the bridge fails due to the phenomenon of flutter. Buffeting caused by turbulence results in structural fatigue, which could lead to the failure of a bridge. Navier-Stokes equations are used for the aeroelastic analysis of bridge girder section. The aeroelastic simulation is carried out to study the aeroelastic stability of bridges using both Computational Fluid Dynamic (CFD) and Computational Structural Dynamic (CSD) schemes.

튜브와 지지대 사이의 동적상호 충격력 측정장치 특성규명에 관한 연구 (A Study on the Characteristics of the Tube-to-Support Dynamic Impact Force Measurement Facility)

  • 김일곤;박진무
    • 소음진동
    • /
    • 제5권1호
    • /
    • pp.95-106
    • /
    • 1995
  • Flow-induced vibration in heat exchanger (or fuel rod) in nuclar power plant can cause dynamic interactions between tubes and tube supports resulting in fretting-wear. To increase the reliability and design life of heat exchanger components, design criteria that establish acceptable limits of vibration and minimize fretting wear are necessary. The fretting-wear rate is dependent upon material combination, contact configuration, environmental conditions and tube-to tube support dynamic interaction. It is demostrated that the fretting -wear rate correlates well with tube-to-support contact force or work rate. The tube-to-support dynamic interaction, which consists of dynamic contact forces and tube motion, is used to relate single-span wear data to real heat exchanger configurations consisting of multi-span tube bundles. This paper describes the test facility to measure tube-to-support dynamic impact force and reports its dynamic characteristics through the four impact tests - a force transduces independent and external impact tests, central ring inside impact test and additional cylinder impact test. Through the tests the impact parameter change dependent upon the material difference of impacting ball is studied, and the impact parameters of Force Transducer Assembly components are measured. And also the dynamic behavior of Force Transducer Assembly is analyzed. The force measurement technique herein is shown to provide a reasonable measure of dynamic contact forces.

  • PDF

Experimental Study on Leak-induced Vibration in Water Pipelines Using Fiber Bragg Grating Sensors

  • Kim, Dae-Gil;Lee, Aram;Park, Si-Woong;Yeo, Chanil;Bae, Cheolho;Park, Hyoung-Jun
    • Current Optics and Photonics
    • /
    • 제6권2호
    • /
    • pp.137-142
    • /
    • 2022
  • Leak detection is one of the most important challenges in condition monitoring of water pipelines. Fiber Bragg grating (FBG) sensors offer an attractive technique to detect leak signals. In this paper, leak measurements were conducted on a water distribution pilot plant with a length of 270 m and a diameter of 100 mm. FBG sensors were installed on the pipeline surface and used to detect leak vibration signals. The leak was demonstrated with 1-, 2-, 3-, and 4-mm diameter leak holes in four different pipe types. The frequency response of leak signals was analyzed by fast Fourier transform analysis in real time. In the experiment, the frequency range of leak signals was approximately 340-440 Hz. The frequency shifts of leak signals according to the pipe type and the size of the leak hole were demonstrated at a pressure of 1.8 bar and a flow rate of 25.51 m3/h. Results show that frequency shifts detected by FBG sensors can be used to detect leaks in pipelines.

기액이상류 원심분리기의 성능개선에 관한 연구 (A Study of the Performance Improvement of a Centrifugal Separator for Gas-Liquid Two-Phase Flow)

  • 김진만;이준희;윤용관;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3215-3220
    • /
    • 2007
  • Gas-liquid separator has been designed for the sake of reducing expenses associated with production operations. To date, a number of gas-liquid separators have been installed and put to use for various applications. Despite the advantages of simple and compact configuration of separator with no moving part, its efficient operation is limited in terms of total pressure losses, separation performance and flow-induced noise and vibration, which are closely associated with the very complicated flow phenomena involved. In the present study, a gas-liquid centrifugal separator with a swirl vane is investigated for the purpose of water separation from compressed moisture air. The 3D Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Based upon the obtained solutions, tangential velocities, centrifugal forces, vortices and total pressure losses are analyzed to find out the best design parameters. From the present study, several attempts are made to improve the performance of conventional separators of centrifugal type.

  • PDF

Experimental investigation on flow field around a flapping plate with single degree of freedom

  • Hanyu Wang;Chuan Lu;Wenhai Qu;Jinbiao Xiong
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.1999-2010
    • /
    • 2023
  • Undesirable flapping motion of discs can cause the failure of swing check valves in nuclear passive safety systems. Time-resolved particle image velocimetry (PIV) was employed to investigate the flow characteristics around a free-to-rotate plate and the motion response, with the Reynolds numbers, based on the hydraulic diameter of the channel, from 1.32 × 104 to 3.95 × 104. Appreciable flapping motion (±3.52°) appeared at the Reynolds number of 2.6 × 104 with the frequency of 5.08 Hz. In the low-Reynolds-number case, the plate showed negligible flapping. In the high-Reynolds-number case, the deflection angle increased with reduced flapping amplitude. The torque from the fluid determined the flapping amplitude. In the low-Reynolds-number case, Karman vortices were absent. With increasing Reynolds numbers, Karman vortices developed behind the plate with larger deflection angles. Strong interaction between the wake flow from the leading and trailing edge of the plate was observed. Based on power spectrum density (PSD) analysis, the vortex shedding frequency coincided with the flapping frequency, and the amplitude was positively correlated to the strength of the vortices. Proper orthogonal decomposition (POD) modes evince that, in the case of appreciable motion, coherent structures exhibited a larger spatial scale, enhancing the magnitude of the external torque on the plate.