• Title/Summary/Keyword: Flow front

Search Result 888, Processing Time 0.032 seconds

플라즈마 키홀 박판 용접에서의 열 및 물질 유동 (Heat and mass flow in plasma arc keyhole-welding of thin plate)

  • 김원훈;나석주
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.813-824
    • /
    • 1988
  • 본 연구에서는 플라즈마 키홀 용접 시의 열 및 물질 유동을 규명함으로써 용 접부 조직변화 예측과 더불어 용접부 형상설계, 열응력 계산 등의 기본자료를 제시하 여 전체적인 용접부 품질성능을 향상시키는데 목적이 있다.

A Semi-Implicit Method for the Analysis of Two-Dimensional Fluid Flow with Moving Free Surfaces

  • Lee, Woo-Il;Park, Jong-Sun;Kim, Min-Soo;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.720-731
    • /
    • 2002
  • Flow with moving free surfaces is analyzed with an the Eulerian coordinate system. This study proposes a semi-implicit filling algorithm using VOF in which the PLIC (Piecewise Linear Interface Calculation) -type interface reconstruction method and the donor-acceptor-type front advancing scheme are adopted. Also, a new scheme using extrapolation of the stream function is proposed to find the velocity of the node that newly enters the computational domain. The effect of wall boundary conditions on the flow field and temperature field is examined by numerically solving a two-dimensional casting process.

CFD evaluation of a suitable site for a wind turbine on a trapezoid shaped hill

  • Unchai, Thitipong;Janyalertadun, Adun
    • Wind and Structures
    • /
    • 제19권1호
    • /
    • pp.75-88
    • /
    • 2014
  • The computational fluid dynamic is used to explore new aspects of the hill flow. This analysis focuses on flow dependency and the comparison of results from measurements and simulations to show an optimization turbulent model and the possibility of replacing measurements with simulations. The first half of the paper investigates a suitable turbulence model for determining a suitable site for a wind turbine. Results of the standard k-${\varepsilon}$ model are compared precisely with the measurements taken in front of the hilltop, The Reynolds Stress Model showed exact results after 1.0 times of hill steepness but the standard k-${\varepsilon}$ model and standard k-${\omega}$ model showed greater underestimation. In addition, velocity flow over Pha Taem hill topography and the reference geometry shape were compared to find a suitable site for a turbine in case the actual hill structure was associated with the trapezoid geometric shape. Further study of geometry shaped hills and suitable sites for wind turbines will be reported elsewhere.

Aerodynamics of High Speed Trains Passing by Each Other

  • FUJII Kozo;OGAWA Takanobu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 창립기념학술대회
    • /
    • pp.5-29
    • /
    • 1995
  • A three-dimensional flow field induced by two trains passing by each other inside a tunnel is studied based on the numerical simulation of the three-dimensional compressible Euler/Navier-Stokes equations formulated in the finite difference approximation. Domain decomposition method with the FSA(fortified solution algorithm) interface scheme is used to treat this moving-body problem. The computed resluts show basic characteristic of the flow field created when two trains passing by each other. History of the pressure distributions and the aerodynamic forces acting on the trains are mailnly discussed. The results indicate that the phenomenon is complicated due to the interaction of the flow induced by two trains. Strong side force occurs between the two trains when the front portion of the opposite train passes by. It fluctuates rapidly and maximum suction force occurs when two trains are aligned side by side. The results also indicate the effectiveness of the present numerical method for moving boundary problems.

  • PDF

On the Subtropical Countercurrent in the Western North Pacific

  • Chang, Sun-duck
    • 한국해양학회지
    • /
    • 제8권1호
    • /
    • pp.4-8
    • /
    • 1973
  • Recent dynamic computations of zonal flow and analysis of oceanographic data of CSK in winter indicate year-to year variations in the location and dynmic structure of the Subtropic Countercurrent in the western North Pacific. In January 1966, the Subtropical Countercurrent migrated southward to 21$^{\circ}$- 22$^{\circ}$N Lat in association with the subsurface Subtropical Convergence. At the area of 25$^{\circ}$- 26$^{\circ}$N Lat, another surface thermal front was formed along which a stronger eastward flow of approximately 0.4kt is seen. On the section of 142$^{\circ}$E Long in January 1967, eastward flow appears at every interval of 2$^{\circ}$latitude in the northern waters of 20$^{\circ}$N Lat.

  • PDF

A Simple Volume Tracking Method For Compressible Two-Phase Flow

  • SHYUE KEH-MING
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.237-241
    • /
    • 2001
  • Our goal is to present a simple volume-of-fluid type interface-tracking algorithm to compressible two-phase flow in two space dimensions. The algorithm uses a uniform underlying Cartesian grid with some cells cut by the tracked interfaces into two subcells. A volume-moving procedure that consists of two basic steps: (1) the update of volume fractions in each grid cell at the end of the time step, and (2) the reconstruction of interfaces from discrete set of volume fractions, is employed to follow the dynamical behavior of the interface motion. As in the previous work with a surface-tracking procedure for general front tracking (LeVeque & Shyue 1995, 1996), a high resolution finite volume method is then applied on the resulting slightly nonuniform grid to update all the cell values, while the stability of the method is maintained by using a large time step wave propagation approach even in the presence of small cells and the use of a time step with respect to the uniform grid cells. A sample preliminary numerical result for an underwater explosion problem is shown to demonstrate the feasibility of the algorithm for practical problems.

  • PDF

Adaptive mass flow method 유압압하식 자동 두께제어 장치에 관한 연구 (A Study on the Hydraulic Automatic Gauge Control System of Adaptive Mass Flow Method)

  • 윤순현;김문경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.101-107
    • /
    • 1996
  • This test was performed on the hydraulic automatic gauge control(AGC) system of adaptive mass flow method. Fundamental purpose of this study are performance evaluation of this AGC system under the actual rolling condition. It was concluded that the response of AGC system depends on the dynamic characteristics of a reel motor or roll position. The test results are as follows : 1) The control method of reel motor current is better than than of the roll position as AGC system. 2) The more steel strip thickness of delivery side is thick, the larger the gauge deviation is large, and the more it is thin, the larger the gauge deviation rate is large. 3) Because the gauge deviation is large at acceleration and deceleration speed than steady speed, so AGC system is better to adopt over 50m/min. By applying this AGC system, not only the accurary in strip thickness were improved but also productivity was improved dramatically.

  • PDF

A Study on The Performance of Supersonic Cascade with The Nozzle Inlet Boundary

  • Shin, Bong-Gun;Jeong, Soo-In;Kim, Kui-Soon;Lee, Eun-seok
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.839-847
    • /
    • 2004
  • In this study, the flow characteristics within supersonic cascades are numerically investigated by using Fine Turbo, a commercial CFD code. Cascade flows are computed for three different inlet conditions. : a uniform supersonic inlet condition, a linear nozzle and a converging-diverging nozzle located in front of cascades. The effect of inlet conditions is compared and flow characteristics including shock patterns and shock-boundary layer interaction are analyzed. Also the effect of design parameters such as pitch-chord ratio, blade angle and blade surface curvature on the flow within supersonic cascades are studied.

  • PDF

Large Eddy Simulation of Turbulent Premixed Flame in Turbulent Channel Flow

  • Ko Sang-Cheol;Park Nam-Seob
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1240-1247
    • /
    • 2006
  • Large eddy simulation of turbulent premixed flame in turbulent channel flow is studied by using G-equation. A flamelet model for the premixed flame is combined with a dynamic subgrid combustion model for the filtered propagation flame speed. The objective of this work is to investigate the validity of the dynamic subgrid G-equation model to a complex turbulent premixed flame. The effect of model parameters of the dynamic sub grid G-equation on the turbulent flame speed is investigated. In order to consider quenching of laminar flames on the wall, wall-quenching damping function is employed in this calculation. In the present study, a constant density turbulent channel flow is used. The calculation results are evaluated by comparing with the DNS results of Bruneaux et al.

초음속 Cavity 유동에 관한 수치해석적 연구 (A Computational Study of the Supersonic Cavity Flow)

  • 정성재;곽종호;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제23회 추계학술대회 논문집
    • /
    • pp.23-26
    • /
    • 2004
  • A computational analysis has been conducted to investigate the detailed flow structure inside a supersonic cavity. The free stream Mach number and Reynolds number are 1.83 and $6.02\times10^5$ respectively. In the present study, the depth and width of the cavity are changed to investigate the effect of the cavity dimensions. A fully implicit finite volume scheme is applied to solve the three-dimensional, steady, unsteady, compressible, Navier-Stokes equations. The computed results are validated with the previous experimental data available. The present computation provides reasonable predictions of the cavity flow, compared with experimental results. The obtained results show that a shock wave is generated in front of the downstream edge of the cavity and the dominant frequencies of the pressure oscillations inside the cavity were obtained.

  • PDF