• 제목/요약/키워드: Flow front

검색결과 888건 처리시간 0.024초

사출성형 해석을 통한 Weldline 및 Flow mark 개선사례 (The Improvement of Weldline and Flow mark Defection by using Injection Molding Analysis)

  • 이영창
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1295-1301
    • /
    • 2013
  • The cause of flow mark defect is known as non-uniform temperature of mold surface when the flow front meets the cold cavity. The exact definition and classification of Flow mark is not clear because the mechanism of flow mark is not figured out till now. Any injection molding analysis software can not predict the flow mark phenomena. To solve weldline and flow mark defects, the gate thickness is reduced to increase the melt front velocity and the melt front velocity of the flow mark area is increased from 82.3mm/s to 104.7mm/s. In addition, the bulk temperature of the flow mark area is increased from $178.3^{\circ}C$to $215.2^{\circ}C$ by adding a cold slug well. The flow mark phenomena can be greatly reduced by increasing the flow front velocity and elevating the bulk temperature.

라디에이터 통과풍량 확보를 위한 수치적 검토 (Numerical Analysis for Improving Passing Flow Rate Quantity abound a Radiator)

  • 김은필;강상훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.304-310
    • /
    • 2001
  • This paper describes the analysis of flow field using a projection finite element method. The projection scheme with a pressure correction is presented for the analysis of an incompressible Navier-Stokes flow. The projection scheme is analyzed numerically and applied to the well-known bench marking problems such as lid driven cavity. Finally, the projection scheme is applied to a flow through the automobiles front. In the automobiles cooling system, the flow through its front is very important to a cooling performance. The results show that the flow quantity increases by locating the position of bumper to the further front position of a car. And, the improvement on the suction part below a bumper achieves the more passing flow quantity. The attachment of an air dam increases passing flow quantity causing the pressure rise to the front part and the pressure drop beneath a car.

  • PDF

비행기에서의 앞날개의 각도에 따른 유동해석 (Flow Analysis due to the Angle of the Front Wing on an Airplane)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제18권12호
    • /
    • pp.22-27
    • /
    • 2019
  • In this study, the flow rate and air resistance pressure were analyzed on models a, b, and c due to the front wing angle of the airplanes. Models a, b, and c have front wing angles of 120°, 100°, and 160°, respectively. The results of the flow analyses showed that the flow rate and air resistance pressure of model c were observed to be higher than models a and b. The airplane model with a larger angle to the front wing is thought to be the best model for flight. This result can be applied to development of the best in-flight airplane.

A Study on the Aerodynamic Characteristics of a Joined-wing Aircraft with Variation of Wing Configurations

  • Kidong Kim;Jisung Jang
    • International Journal of Aerospace System Engineering
    • /
    • 제10권1호
    • /
    • pp.1-13
    • /
    • 2023
  • The present study was attempted to investigate flow interference effects and the aerodynamic characteristics of the front and rear wings of a joined-wing aircraft by changing the configuration variables. The study was performed using a computational fluid dynamics(CFD) tool to demonstrate forward flight and analyze aerodynamic characteristics. A total of 9 configurations were analyzed with variations on the position, height, dihedral angle, incidence angle, twist angle, sweepback angle, and wing area ratio of the front and rear wings while the fuselage was fixed. The quantities of aerodynamic coefficients were confirmed in accordance with joined-wing configurations. The closer the front and rear wings were located, the greater the flow interference effects tended. Interestingly, the rear wing did not any configuration change, the lift coefficient of the rear wing was decreased when adjusted to increase the incidence angle of the front wing. The phenomenon was appeared due to an effective angle of attack alteration of the rear wing resulting from the flow interference by the front wing configurations.

공동 입구의 경계층에 관한 실험적 연구 (Experimental study of boundary layer at the entrance of a cavity)

  • 정용운;박승오;이덕주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.775-778
    • /
    • 2002
  • In order to analyse the mechanism of a flow tone around a cavity, the correlations between the flow in the cavity and the boundary layer flow in front of the cavity are studied experimentally in this paper. The instability In the boundary layer forms the vortex at the front edge of the cavity and the flow tone is occurred by the vortex breakdown at the rear edge of the cavity Therefore, the boundary layer measurement is important in the cavity flow control. We measure the velocity of the boundary layer at the entrance of the cavity using hot-wire anemometry and the flow tone around the cavity by microphone. The boundary layer characteristic is changed by the various angle of the flap on the front edge of the cavity, while it is less influenced by the ratio of length and depth of the cavity.

  • PDF

Flow separator가 부착된 수직벽 후류유동의 실험적 연구 (Experimental study of vertical fence wake with flow separator)

  • 최영호;김형범
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.68-72
    • /
    • 2006
  • Vertical fence has the coherent flow structure in front of the fence. In the present study, the wake change due to the flow separator in front of the vertical fence was experimentally investigated. Quantitative method was applied to study the separated shear flow field. The results show the flow separator changes the downstream shear flow and alters the curvature of separated shear layer As the freestream velocity increased, the reattachment length also increased.

  • PDF

차체 전방의 앞 유리 경사각도에 따른 유동해석에 관한 연구 (Flow Analysis due to the Slant Angle of a Windscreen at the Front of a Car Body)

  • 최계광;조재웅
    • 한국기계가공학회지
    • /
    • 제19권9호
    • /
    • pp.9-14
    • /
    • 2020
  • In this study, CFX analyses were performed with flow models to minimize the flow resistance due to the windscreen on the front of a car body. The results indicated that the greater the slant angle of the windshield, the greater the maximum pressure area. The lower the slant angle of the windscreen, the smaller the area in which the air collides with the front of the car body and the more smoothly the air moves. The results of this study can be applied to increase fuel economy under driving conditions by changing the slant angle of the vehicle's windscreen.

효과적인 웰드라인 제어를 위한 사출성형 유동해석 (Flow Analysis for an Effective Weld Line Control in Injection Molding)

  • 김현필;김용조
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.64-72
    • /
    • 2001
  • Weld line is one of serious troubles which are observed in a plastic part manufactured by a injection molding process. This is caused by many process factors, which are molding pressure, temperature, velocity, location of a injection gate, mold geometry and material properties. investigation on the effects of these process factors to the appearance of a weld line was carried out using a finite element method. Filling and packing analyses were carried out by modifying both the configuration of the injection gates and cavity thickness. Proper locations of the injection gates could be determined by considering molding pressure, temperature, velocity and frozen layer, and whereby the weld line was controled. In order to make a weak appearance of the weld line, flow velocity and flow front in a cavity were also investigated by modifying a cavity thickness. As a result, flow front was extended around the corner in the cavity by changing the flow velocity and hence the appearance of the weld line was much weakened.

  • PDF

차 개구형상이 엔진룸내 유동에 미치는 영향에 관한 수치연구 (The Numerical Study of the Effect of Car Front Opening Area on the mean Flow in Engine Room)

  • 류명석;이은준;구영곤
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.158-165
    • /
    • 1996
  • The knowledge of air flow in an engine room has become more and more important in recent car design. The fluid flow in the engine compartment was investigated by numerical analysis. Due to the complex geometry of the engine compartment, mesh generation is a time-consuming job. In this research, the "ICEM" code was used to generate meshes by the Cartesian mesh model. The Reynolds-averaged Navier Stokes equations, together with the porous flow model for radiator and condenser, were solved. Computation was performed for the steady, incompressible, and high speed viscous flow, adopting the standard K-ε turbulence model. The "STAR-CD" code was used as a solver. The effect of car front openning area on the flow in engine room was also investigated.

  • PDF

엔진룸내 방열기 전단면 유동 불균일도 측정에 관한 연구 (Experimental Study of the Non-Uniform Mean Flow at the Front of a Radiator in Engine Room)

  • 류명석
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.72-79
    • /
    • 1996
  • The recent trend of higher output engines with more auxiliary parts is resulting in greater heat generation in the engine compartment. In order to maximize the heat dissipation and eliminate the inefficient flow in the engine compartment, it is necessary to understand the flow field under the hood. In this respect, experimental study as well as numerical analysis should be conducted. The automated measuring system was constructed to obtain three dimensional mean flow data with high accuracy. The measurements have been made on a vehicle with a steady incoming air flow. The result shows that there exists a high degree of non-uniformity in the mean flow velocity at the front of radiator.

  • PDF