• Title/Summary/Keyword: Flow failure

Search Result 881, Processing Time 0.025 seconds

Prediction of Hydrofracture of Rock Salt under Ground at the Waste Isolation Pilot Plant (지하 핵 폐기물 저장 암염의 파괴현상 검증 및 분석)

  • Heo, Gwang-Hee;Lee, Cheo-Keun;Heo, Yol
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.139-162
    • /
    • 1995
  • The possibility of the development of gas driven hydrofractures at the Waste Isolation Pilot Plant(WIPP) is investigated through analytical and numerical calculations and through laboratory experiments. First, an investigation of the chemical reactions involved shows that a large volume of gas could potentially be generated through the oxidation of iron in the waste. Simple ground water'flow calculations then show that unless regions of high permeability has been created, this gas volume will build up the pressure high enough to cause tensile damage in the horizontal planes of weakness or in the halite itself. The analytical calculations were performed using the concepts of linear elastic fracture mechanics and the numerical calculations were done using the finite element method. Also, laboratory tests were conducted to illustrate possible failure mechanisms. It is possible that after growing horizontal crack in the weaker anhydride layer, the crack could break out of this layer and propagate upward into the halite and toward the ground surface at an inclined argle of around 53$^{\circ}$ above horizontal. To prevent this latter phenomenon the anhydrite must have a fracture toughness less than 0.5590 times than that of the halite. Through the tests, three types of crack(radial vertical cracks, horizontal circular cracks and cone -shaped cracks) were observed.

  • PDF

An Experimental Determination of a Swing Check Valve Closure Time in the Main Feed Water System of a Power Plant during Shut-down Process (발전소 주급수 계통 감발 과정에서의 스윙체크밸브 닫힘 시점의 실험적 결정)

  • Suh, Jin-Sung;Kim, Won-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.843-849
    • /
    • 2009
  • The reliable operation of a swing check valve in the main feed water system of a power plant is most essential for successful shout-down process. A failure to close the valve at proper time often leads to the instability of the main feed water system, or even to an emergency stop of the power plant. In reality it is a very difficult task to monitor the behavior of a swing check valve. Furthermore it is impossible to see the motion of the valve. In this work two measurements were carried out simultaneously to determine the precise valve closure time. The dynamic pressure measurements were made at the inlet and outlet regions of the swing check valve. The transient vibration of the valve housing in the direction of water flow was also measured, which enabled the measurement of the transient vibration of the valve housing near valve closure. By comparing the results produced from these measurements the precise valve closure time could be determined. By carrying out order tracking technique using the dynamic pressure signals and pump rpm signal, the complicated dynamic problems inside the main feed water system can be more easily dealt with. This measurement scheme might be implemented in a power plant on a real-time basis without much difficulty. If this could be implemented, valuable information essential for shut-down operations can readily be passed on to the main control room. The feasibility of this implementation was demonstrated by this experimental work.

A Study on the Impact of Landfill Leachate on the Water Environment - A case study of Nanji landfill - (매립지 침출수가 수환경에 미치는 영향에 관한 연구 - 난지도 매립지 사례를 중심으로-)

  • Park, Seok Soon;Park, Jae Woo;Jeong, Mi Hoon;Lee, Ji Mi;Cho, Kyung Sook;Yi, Seung Mook
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.2
    • /
    • pp.9-20
    • /
    • 1999
  • Until 1993, Nanji landfill has been the main solid waste treatment facility for Seoul, which is the capital of Korea. Since the landfill has not been properly lined, soil and ground water around the landfill has been contaminated. Due to the proximity, it has been speculated that the water quality of the Han River would have been also influenced by the leachate. In order to illuminate this, HELP model to estimate the quantity of the leachate from Nanji landfill and RMA model to simulate the change of water quality in Han River were applied in this research. The result indicates that the quantity of leachate from Nanji landfill has been overestimated by previous works and it was due to the failure to consider the water storage capacity of the landfill. The effect from Nanji landfill leachate on the water quality, in terms of COD input, proves to be smaller than those from other tributaries and influents to the River and the effect is larger when the flow of the River is reversed due to the tide.

  • PDF

The Strength and Deformation Characteristics of Jumunjin Sand under Low Confining Stresses (낮은 구속응력에 대한 주문진 표준사의 강도 및 변형 특성)

  • Han, Young-Chul;Lim, Hyun-Sung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.33-42
    • /
    • 2014
  • The shear strength and deformation characteristics of granular soils at low confining stresses differ from those with high confining stresses. Thus, the clear understanding of geotechnical problems related to the low confining stress state such as the stability of shallow foundations, embankments, slope failure, debris flow characteristics and liquefaction as well as the various laboratory model tests is needed. In this study, drained triaxial compression tests with the cell pressures from 5 kPa to 300 kPa were performed on dry Jumunjin sand. The results show that the internal friction angle and deformation modulus are dependent on the confining stress. Also, the correlations between them on the dense and loose sand were established.

Transit Time Flowmetry and Vein Size Are Predictive of Arteriovenous Fistula Maturation

  • Kwon, Yelee;Cho, Young Jong;Kang, Pil Je;Cho, Won Chul
    • Journal of Chest Surgery
    • /
    • v.53 no.5
    • /
    • pp.297-300
    • /
    • 2020
  • Background: This study aimed to assess the effect of vessel size and flow characteristics on the maturation of autogenous radiocephalic arteriovenous fistulae (RCAVFs). Methods: We retrospectively reviewed records of patients undergoing RCAVF creation at a single medical center from January 2013 to December 2019. Operative variables were compared between patients whose fistulae matured and those whose fistulae failed to mature. Results: Overall, 152 patients (33 of whom were women) with a mean age of 62.6±13.6 years underwent RCAVF creation; functional maturation was achieved in 123. No statistically significant differences were observed between patients in whom maturation was or was not achieved in terms of the following variables: female sex (20.3% vs. 25.0%), radial artery size (2.5 vs. 2.4 mm), and pulsatility index (0.69 vs. 0.62). Low intraoperative transit time flowmetry (TTF; 150.4 vs. 98.1 mL/min) and small vein size (2.4 vs. 2.0 mm) were associated with failure of maturation. The best cutoff diameter for RCAVF TTF and cephalic vein size were 105 mL/min and 2.45 mm, respectively. Conclusion: In patients who undergo RCAVF creation, vein diameter on preoperative ultrasonography and intraoperative TTF are predictors of functional maturation. We identified an intraoperative TTF cutoff value that can be used for intraoperative decision-making.

Objectives Analysis of the Another Subject Education for Construct of Education Goals of computer in Elementary School (초등학교 컴퓨터 교육목표의 구성을 위한 타 교과 교육목표 분석)

  • Kim, Woon-Sik;Han, Sun-Kwan
    • 한국정보교육학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.28-37
    • /
    • 2004
  • The purpose of this paper is Inflect ICT in each subject class of common school by effort about education Information that was regularized with enforcement of the seventh training courses and arrived in visual point that realize education information concretely. But, such realistic that specific discussion and research about actual ICT introduction direction or practical use way consisted enough up to now despite Is urgent example difficult. Decide target connected with Information Technology by classified grade-class and plan that teach learners systematically may have to flow fair discussion and trial run success or failure of education and point that is connected directly problem that establish date or the level and target that it is very as itself value how. Therefore, this research wished to premise computer-aided education target in primary school by analyze education target of each subject that come out in primary grade subject and abroad training courses.

  • PDF

Thermo-Mechanical Analysis of Continuous-Adjustment Thruster using Explosion Pressure (폭압을 사용하는 연속조정 추진구조체의 열-구조해석)

  • Kim, Kyung-Sik;Kwon, Young-Doo;Kwon, Soon-Bum;Gil, Hyuck-Moon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.699-705
    • /
    • 2011
  • High-maneuver missile is a projectile which demands a strong momentum at short time. To produce a necessary thrust for the flight, the gas of high temperature and pressure is generated through explosive combustion of solid propellant, and a great thrust can be obtained by expanding this high temperature and pressure gas. Although the operating time of a rocket motor is less than a few seconds, a failure of part or ablation near the throat of nozzle may take place during the expansion of high temperature and pressure gas for great thrust. In other words, for the precise control of a missile an exact stress analysis considering both, the thermal stress caused by the heat transfer between combustion gas and wall, and the mechanical stress caused by the pressure change in the flow, should be considered first. In this connection, this study investigated the safety, as a point of view of stress and melting point of the material, of the pre-designed thrust generating structure which is subjected to high temperature and pressure as a function of motor operating time.

Ultimate lateral capacity of two dimensional plane strain rectangular pile in clay

  • Keawsawasvong, Suraparb;Ukritchon, Boonchai
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.235-252
    • /
    • 2016
  • This paper presents a new numerical solution of the ultimate lateral capacity of rectangular piles in clay. The two-dimensional plane strain finite element was employed to determine the limit load of this problem. A rectangular pile is subjected to purely lateral loading along either its major or minor axes. Complete parametric studies were performed for two dimensionless variables including: (1) the aspect ratios of rectangular piles were studied in the full range from plates to square piles loaded along either their major or minor axes; and (2) the adhesion factors between the soil-pile interface were studied in the complete range from smooth surfaces to rough surfaces. It was found that the dimensionless load factor of rectangular piles showed a highly non-linear function with the aspect ratio of piles and a slightly non-linear function with the adhesion factor at the soil-pile interface. In addition, the dimensionless load factor of rectangular piles loaded along the major axis was significantly higher than that loaded along the minor axis until it converged to the same value at square piles. The solutions of finite element analyses were verified with the finite element limit analysis for selected cases. The empirical equation of the dimensionless load factor of rectangular piles was also proposed based on the data of finite element analysis. Because of the plane strain condition of the top view section, results can be only applied to the full-flow failure mechanism around the pile for the prediction of limiting pressure at the deeper length of a very long pile with full tension interface that does not allow any separation at soil-pile interfaces.

The Industrial Economic Costs of Unsupplied Electricity in OECD Countries using Input-Output Analysis (산업연관분석을 활용한 전력의 산업별 공급지장비용 평가 : OECD 국가를 중심으로)

  • Lee, Seung-Jae;Jeong, Dong-Won;Yu, Jae-Gab
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.4
    • /
    • pp.191-198
    • /
    • 2016
  • As the electricity produced from the electricity industry, a national key industry in Korea, are supplied to other industries as an intermediate goods, the supply shortage of electricity industry has a large impact on the national economy. This paper attempts to analyze the supply shortage effects which are defined as the negative impact of one won of supply failure in the electricity on the production of other industries. To this end, an input-output analysis using an input-output (I-O) table describing inter-industry flow of intermediate goods is applied. More concretely, the supply-driven model is applied subject to the OECD countries. The value of the supply effects interfere with Denmark's best large 1.682 was followed by South Korea, Japan, Australia, the UK.

Effects of Mg and Cu Additions on Superplastic Behavior in MA Aluminum Alloys

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.435-439
    • /
    • 2018
  • MA Al alloys are examined to determine the effects of alloying of Mg and Cu and rolling on tensile deformation behavior at 748 K over a wide strain rate range($10^{-4}-10^3/s$). A powder metallurgy aluminum alloy produced from mechanically alloyed pure Al powder exhibits only a small elongation-to-failure(${\varepsilon}_f$ < ~50%) in high temperature(748 K) tensile deformation at high strain rates(${\acute{\varepsilon}}=1-10^2/s$). ${\varepsilon}_f$ in MA Al-0.5~4.0Mg alloys increases slightly with Mg content(${\varepsilon}_f={\sim}140%$ at 4 mass%). Combined addition of Mg and Cu(MA Al-1.5%Mg-4.0%Cu) is very effective for the occurrence of superplasticity(${\varepsilon}_f$ > 500%). Warm-rolling(at 393-492 K) tends to raise ${\varepsilon}_f$. Lowering the rolling-temperature is effective for increasing the ductility. The effect is rather weak in MA pure Al and MA Al-Mg alloys, but much larger in the MA Al-1.5%Mg-4.0%Cu alloy. Additions of Mg and Cu and warm-rolling of the alloy cause a remarkable reduction in the logarithm of the peak flow stress at low strain rates (${\acute{\varepsilon}}$< ~1/s) and sharpening of microstructure and smoothening of grain boundaries. Additions of Mg and Cu make the strain rate sensitivity(the m value) larger at high strain rates, and the warm-rolling may make the grain boundary sliding easier with less cavitation. Grain boundary facets are observed on the fracture surface when ${\varepsilon}_f$ is large, indicating the operation of grain boundary sliding to a large extent during superplastic deformation.