• Title/Summary/Keyword: Flow conditions

Search Result 7,185, Processing Time 0.034 seconds

Development of Critical Heat Flux Correction Factor for Water under Flow Oscillation Conditions

  • Kim, Yun-Il;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.242-247
    • /
    • 1996
  • Flow oscillations in boiling channels induces a drastic reduction of the (critical heat flux) CHF or premature burnout. However, most of CHF works and correlations have been focused on stable flow conditions without considering flow oscillation. Therefore to improve the understanding on flow oscillation CHF, in this paper a new CHF correction factor to predict the CHF values under flow oscillation conditions has been developed from 126 experimental data. Also to investigate the dominant factor on flow oscillation CHF parametric trends are analyzed by using the developed correction factor. The overall mean accuracy ratio of the developed correction factor is 1.033 with a standard deviation of 0.195. The RMS errors 0.198. Its assessment shows that the predictions agree well with the experimental data within 25% error bounds.

  • PDF

Analytical Approach of Polymer Flow in Thermal Nanoimprint Lithography (열-나노임프린트 리소그래피 공정에서의 폴리머 유동에 대한 해석적 접근)

  • Kim, Kug-Weon;Kim, Nam-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.20-26
    • /
    • 2008
  • Nanoimprint lithography(NIL) is becoming next generation lithography of significant interest due to its low cost and a potential patterning resolution of 10nm or less. Success of the NIL relies on the adequate conditions of pressure, temperature and time. To have the adequate conditions for NIL, one has to understand the polymer flowing behavior during the imprinting process. In this paper, an analytical approach of polymer flow in thermal NIL was performed based on the squeeze flow with partial slip boundary conditions. Velocity profiles and pressure distributions of the polymer flow were obtained and imprinting forces and residual thickness were predicted with the consideration of the slip velocity between the polymer and the mold/substrate. The results show that the consideration of the slip is very important for investigating the polymer flow in Thermal NIL.

Experimentation and Modeling of R32/125/134a Flow Through Short Tube Orifices (R32/125/134a를 사용한 오리피스 팽창장치의 성능실험 및 모델링)

  • 김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.45-54
    • /
    • 1996
  • An experimental investigation on the two-phase flow through tube orifices was performed with the refrigerant mixture of R32/125/134a(30/10/60). A series of tests were conducted to generate wide range of data at varying operation conditions with four short tubes. The tests include both single and two-phase flow conditions at the inlet of the short tube with different oil concentrations. Experimental data were presented as a function of major operating parameters and short tube diameter. Based on test results and data analysis, a semi-empirical flow model was developed to predict the mass flow rate through short tube orifices with a given set of conditions. The flow model was formed to cover both single and two-phase flow at the inlet of short tube with considering the effects of oil concentration.

  • PDF

Air-Water Two-Phase Flow Performances of Centrifugal Pump with Movable Bladed Impeller and Effects of Installing Diffuser Vanes

  • Sato, Shinji;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • It's known that pump head of centrifugal impeller with lager blade outlet angle is kept higher in air-water two phase flow condition, though the efficiency in water single phase flow condition is inferior. In the present study, a centrifugal impeller with variable blade outlet angles, that has higher efficiencies in both water single phase flow and air-water two phase flow conditions, is proposed. And the performances of the centrifugal impeller with variable blade outlet angles were experimentally investigated in both flow conditions of single and two-phase. In addition, effects of installing diffuser vanes on the performances of centrifugal pump with movable bladed impeller were also examined. The results are as follows: (1) The movable bladed impeller that proposed in this study is effective for higher efficiency in both water single phase and air-water two phase flow conditions. (2) When diffuser vanes are installed, the efficiency of movable bladed impeller decreases particularly at large water flow rate in water single-phase flow condition; (3) The performances of movable bladed impeller are improved by installing of diffuser vanes in air-water two-phase flow condition at relatively small water rate. The improvement by installing of diffuser vanes however disappears at large water flow rate.

The study on the Two-Phase Swirl Flow Characteristics in Cylindrical Pipe (원관내의 이상선회유동 특성에 관한 연구)

  • 차경옥;김재근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.187-197
    • /
    • 1996
  • Many investigations have been made to determine the pressure drop and heat transfer characteristics for single phase flow in tape generated swirl flow. But few studies have been carried out to investigate the heat transfer in two component, two phase swirl flow with non-boiling. An experimental study has been conducted to determine the effects of tape twist ratios on two phase convective heat transfer coefficients, pressure drop, and void fraction distribution in a non-boiling, air-water, two phase flow. The flow conditions were both swirl and non swirl flows. The internal diameter of the test section is 42.5mm. The tape twist ratios of pitch to diameter ratio varied from 4.0 to 10.6. The heating conditions were isothermal and nonisothermal. The flow patterns identified with experiments were bubbly, bubbly-slug, slug, and slug-annular flow in up-flow. This study has concluded that no significant difference in void fraction distribution were observed both isothermal and nonisothermal conditions, the pressure drop for two phase flow with twisted tape swirler increase as the tape twist ratio decrease, and that values of two phase heat transfer coefficient increase when the tape twist ratio decreases.

  • PDF

A Numerical Study on the Flowfield around a NACA 0021 Airfoil at Angles of Attack (NACA 0021 익형 유동장의 수치해석적 연구)

  • Kim, Sang-Dug
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.20-25
    • /
    • 2016
  • A primary benefit of flight at high angle-of-attack conditions is to be able to reduce the speed of flight and maneuvers, which can enhance the capability of sensing and obstacle avoidance for a small UAV. The flight at high angle-of-attack conditions, however, is easy to be beyond stall which is characterized by substantial flow separation over an airfoil. Current numerical analysis was conducted on the capabilities of three representative turbulence models to predict the aerodynamic characteristics of a typical airfoil at angle-of-attack conditions. The investigation shows that these turbulence models provide good comparison with experimental data for attached flow at moderate angle-of-attack conditions. Calculation by current turbulence models are, however, not appropriate at high angle-of-attack conditions with flow separation.

In-vivo Measurements of Blood Flow Characteristics in the Arterial Bifurcation Cascade Networks of Chicken Embryo (유정란 태아외부혈관의 단계적으로 분기되는 동맥 분지관 내부 혈액 유동특성의 in-vivo 계측)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.121-124
    • /
    • 2006
  • The arteries are very important in cardiovascular system and easily adapt to varying flow and pressure conditions by enlarging or shrinking to meet the given hemodynamic demands. The blood flow in arteries is dominated by unsteady flow phenomena due to heart beating. In certain circumstances, however, unusual hemodynamic conditions cause an abnormal biological response and often induce circulatory diseases such as atherosclerosis, thrombosis and inflammation. Therefore quantitative analysis of the unsteady pulsatile flow characteristics in the arterial blood vessels plays important roles in diagnosing these circulatory diseases. In order to verify the hemodynamic characteristics, in-vivo measurements of blood flow inside the extraembryonic arterial bifurcation cascade of chicken embryo were carried out using a micro-PIV technique. To analyze the unsteady pulsatile flow temporally, the (low images of RBCs were obtained using a high-speed CMOS camera at 250fps with a spatial resolution of $30{\mu}m\times30{\mu}m$ in the whole blood vessels. In this study, the unusual flow conditions such as flow separation or secondary flow were not observed in the arterial bifurcations. However, the vorticity has large values in the inner side of curvature of vessels. In addition, the mean velocity in the arterial blood vessel was decreased and pulsating frequency obtained by FFT analysis of velocity data extracted in front of the each bifurcation was also decreased as the bifurcation cascaded.

  • PDF

Simulation of Turbulent Flow Over Square Cylinder Using Lattice Boltzmann Method (LBM을 이용한 사각형 실린더 주위의 난류유동해석)

  • Kim Hyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.438-445
    • /
    • 2006
  • We performed the simulation of the unsteady three dimensional flow over a square cylinder in a wind tunnel in moderate Reynolds number range, $100{\sim}2500$ by using LBM. SGS model was applied for the turbulent flow. Frist of all we compared LBM(Lattice Boltzmann Method) solution of Poiseuille flow applied Farout and bounce back boundary conditions with the analytical and FOAM solutions to verify the applicability of the boundary conditions. For LBM simulation the calculation domain was formed by structured grids and prescribed uniform velocity and density inlet and Farout boundary conditions were imposed on the in-out boundaries. Bounceback and wind tunnel boundary conditions were applied to the cylinder walls and the boundaries of calculation domain respectively. The maximum Strouhal number of the vortex shedding is 0.2025 at Re = 750. and the number maintains the constant value of 0.18 when Re>1000. We also predicted that the critical reynolds number of the turbulent flow is in the range of $250{\sim}500$.

Estimation of Suitable Flow Needs for Maintaining Fish Habitat Conditions Using Water Quantity and Quality Simulation (수량.수질 모의치를 이용한 어류 서식 조건 유지에 필요한 적정 유량 산정)

  • Kim, Gyu-Ho;Jo, Won-Cheol;Jeon, Byeong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.3-14
    • /
    • 2000
  • The primary objective of this study is to estimate the suitable flow in need for conservation and restoration of the fish habitat in running water ecosystem, which has very important status in the instream flow for stream environment. Year, monthly low flows are estimated to properly maintain the fish habitat. Water depth and velocity are simulated, and also water temperature and Dissolved Oxygen(DO) are predicted at gradually varied flow using estimated low flows. These simulated conditions for each low flow are graphically compared with the requirements to maintain fish habitat at each life stage. These processes were applied to 3 riffle transects located at Dalcheon(Dal stream) in the South Han river. Pirami (Zacco platypus) was selected as a representative fish species in Dalcheon. It was shown that the suitable flow for maintaining the representative fish habitat at each life stage depends on hydraulic conditions rather than water quality conditions, and the flow ranges from the 10-year minimum low flow to consecutive 7-day 2.33-year low flow.w flow.

  • PDF

Large eddy simulation of a square cylinder flow: Modelling of inflow turbulence

  • Tutar, M.;Celik, I.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.511-532
    • /
    • 2007
  • The present study aims to generate turbulent inflow data to more accurately represent the turbulent flow around a square cylinder when the inflow turbulence level is significant. The modified random flow generation (RFG) technique in conjunction with a previously developed LES code is successfully adopted into a finite element based fluid flow solver to generate the required inflow turbulence boundary conditions for the three-dimensional (3-D) LES computations of transitional turbulent flow around a square cylinder at Reynolds number of 22,000. The near wall region is modelled without using wall approximate conditions and a wall damping coefficient is introduced into the calculation of sub-grid length scale in the boundary layer of the cylinder wall. The numerical results obtained from simulations are compared with each other and with the experimental data for different inflow turbulence boundary conditions in order to discuss the issues such as the synthetic inflow turbulence effects on the 3-D transitional flow behaviour in the near wake and the free shear layer, the basic mechanism by which stream turbulence interacts with the mean flow over the cylinder body and the prediction of integral flow parameters. The comparison among the LES results with and without inflow turbulence and the experimental data emphasizes that the turbulent inflow data generated by the present RFG technique for the LES computation can be a viable approach in accurately predicting the effects of inflow turbulence on the near wake turbulent flow characteristics around a bluff body.