• Title/Summary/Keyword: Flow calculation

Search Result 1,940, Processing Time 0.031 seconds

Numerical Analysis on Passenger Flow for the Model of Railway Station (철도 역사 모델에 대한 여객 유동 해석)

  • Kwon, Hyeok-Bin;Cha, Chang-Hwan;Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.387-391
    • /
    • 2006
  • Insight into behaviour of pedestrians as well as tools to assess passenger flow conditions are important in for instance planning and geometric design of railway station under regular and safety-critical circumstances. Algorithm for passenger flow analysis based on DEM(Discrete Element Method) is newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. To verify the effectiveness of new algorithm, passenger flow analysis for the basic models of railway station is conducted.

  • PDF

Predicting aerodynamic characteristics of two-dimensional automobile shapes in ground proximity using an iterative viscous-potential flow technique (점성-비점성 유동 반복계산 방법을 이용한 2차원 자동차모형의 공력 특성 예측)

  • 최도형;최철진
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.52-61
    • /
    • 1986
  • An iterative viscous-potential flow procedure has been developed and used to predict aerodynamic characteristics of automobiles in ground proximity. The method is capable of predicting the effects of separated flows. The viscous-potential flow iteration procedure provides the connection between potential flow, boundary layer and wake modules. The separated wake is modeled in the potential flow analysis by thin sheets across which exists a jump in velocity potential. The ground effect is properly accounted for by placing a body image in the potential flow calculation. The agreement between theory and experiment is good and, thus, demonstrates that the method can be used in the preliminary design stage.

  • PDF

Adaptability of one-dimensional analysis for the flow distribution of a complex duct system (복합 덕트시스템의 유량분배에 관한 1차원 해석의 적합성)

  • 이승철;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.579-587
    • /
    • 1999
  • The flow distribution characteristics in a complex duct system have been investigated in this paper by three means, namely experimental measurement, numerical simulation and the Extended T-method analysis. While the exit flow rates predicted by the three-dimensional CFD calculation and those given by the experiment show a close agreement, the results from the one-dimensional Extended T-method are found to differ from the experiment by -22.2% to 26.3% for the various exits. These discrepancies may be attributed to the underlying limitation concerning the fitting loss coefficients, which assume that the flow in front of the fittings is fully developed. It is proposed that, in order to analyse the three-dimensional flow distributions in a complex duct system by one-dimensional analysis such as the Extended T-method, further Improvements to the fitting loss coefficients should be made.

  • PDF

Software Package for Pipe Hydraulics Calculation for Single and Two Phase Flow (배관 유동의 주요 변수계산을 위한 소프트웨어 시스템의 개발)

  • Chang, Jaehun;Lee, Gunhee;Jung, Minyoung;Baek, Heumkyung;Lee, Changha;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.628-636
    • /
    • 2019
  • In various industrial processes, piping serves as a link between unit processes and is an essential installation for internal flow. Therefore, the optimum design of the piping system is very important in terms of safety and cost, which requires the estimation of the pressure drop, flow rate, pipe size, etc. in the piping system. In this study, we developed a software that determines pressure drop, flow rate, and pipe size when any two of these design variables are known. We categorized the flows into single phase, homogeneous two phase, and separated two phase flows, and applied suitable calculation models accordingly. We also constructed a system library for the calculation of the pipe material, relative roughness, fluid property, and friction coefficients to minimize user input. We further created a costing library according to the piping material for the calculation of the investment cost of the pipe per unit length. We implemented all these functions in an integrated environment using a graphical user interface for user convenience, and C # programming language. Finally, we verified the accuracy of the software using literature data and examples from an industrial process with obtained deviations of 1% and 8.8% for the single phase and two-phase models.

LES of Turbulent Mixing of Non-Reactive Flow in Gas Generator (가스발생기 비-반응 유동의 난류 혼합에 대한 LES 해석)

  • Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1171-1179
    • /
    • 2008
  • LES analysis was conducted with in-house CFD code to investigate the turbulence evolution and interaction due to turbulence ring and splash plate in the gas generator. The calculation results show that the installation of turbulence ring can introduce additional turbulences and significantly improve turbulent mixing in the downstream flow. However, the addition of splash plate in the downstream of TR(Turbulence Ring) brings totally different shape of perturbation energy and enstrophy distribution into turbulent mixing. This enhancement can be done by the formation of the intensively strong vorticity and mixing behind the plate. Pressure drop was found to be a reasonable level of about 1% or less of initial pressure in all calculation cases. Also, calculation results revealed that the variation of shape and intrusion length of TR did not greatly affect the characteristics of turbulent mixing in the chamber. Even though the effect of installation location of splash plate on the turbulent mixing was not investigated yet, calculation results conclude the addition of splash plate leads to the increase in turbulent mixing with an acceptable pressure drop.

Flow Visualization and Calculation at the Outlet of Propellant Tank Pressurizing Gas Injector (추진제탱크 가압용 인젝터 출구에서의 유동가시화 및 해석)

  • Kwon, Oh-Sung;Han, Sang-Yeop;Kwon, Ki-Jung;Chung, Yong-Cahp
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.73-79
    • /
    • 2010
  • Propellant tank pressurizing gas injector is used in the pressurization system of liquid propellant rocket to reduce incoming gas velocity and distribute the gas in the tank. Temperature distribution in the propellant tank ullage is varied according to the gas injector shape, and it has influence on the required pressurant gas and thermal phenomena in the tank. In this paper, diffuser type gas injector was studied to make the ullage have stratified temperature distribution. Injected gas flow at the outlet of prototype diffuser was visulized using particle image velocimetry method and it was compared with the results of calculation. Calculation was well agreed with measurement and was used as an inlet condition of propellant tank ullage calculation.

A Study on Improvement of the Calculation Methodology of Employee Invention Compensation (직무발명 보상액 산정 방법론의 개선 방안 연구)

  • Cho, Myunggeun;Lee, Hwansoo
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.12
    • /
    • pp.101-110
    • /
    • 2017
  • According to the Statistics Korea in 2016, 56.9% of companies do not fairly pay compensation for employee invention, despite the increasing proportion of the inventions in corporations. One reason is that the objective calculation method for employee and patent's contribution and the clear standard of fair compensation have not been established. Therefore, this study proposes a new calculation method using DCF (Discounted cash flow) and AHP (Analytical hiearchy process) methodology to calculate the fair amount of employee invention compensation, and verified it through real case examples. As a result, 2.3 times higher amount of compensation was calculated than the previous approach. This study is meaningful that it provided objective compensation criteria that could more protect the inventor in the situation which the clear criteria for the calculation of fair compensation are not established. This methodology is expected to be applicable for SMEs as employee invention compensation.

Analysis of Resistance Performance of a Ship having a Large Attitude based on CFD (CFD에 의한 자세변화가 큰 선박의 저항성능 해석)

  • Kim, Hyun-Soo;Park, Dong-Woo;Yang, Young-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.961-967
    • /
    • 2019
  • This research presents an efficient method based on computational fluid dynamics (CFD) for estimating the resistance performance of a ship with a large settlement amount and a dynamic trim. The settlement of the inviscid flow analysis and the results of dynamic trim were used to set a large attitude for the ship prior to performing a viscous flow analysis; a viscous flow analysis was subsequently performed by Dynamic Fluid Body Interaction (DFBI). This method is termed as method I, in which a simple grating system can be used without employing the overset mesh technique by setting many attitudes before interpretation. Thus, method I is advantageous in reducing calculation time and improving calculation accuracy. The viscous flow analysis was performed using a commercial CFD code STAR-CCM+. Compared with the final convergence result, the first viscous flow analysis result of method I exhibited a variation of less than 1 % of resistance. The result was obtained by changing the gratings each time an attitude is changed at each calculation stage, based on the DFBI method provided to STAR-CCM+ using a simple grating system, which is not a superposed grating. This method is termed as method II. Compared with method II of resistance, method I exhibited a dif erence of 0.03-0.6 % for linear velocity. The results of method I were confirmed to be qualitatively and quantitatively appropriate through comparison with several trillion simulations.

A Study for Evaluating of Voltage Stability Margin Considering Shunt Capacitor (조상설비를 고려한 전압안정성 여유전력의 평가에 관한 연구)

  • 김세영
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 1998
  • This paper presents a fast calculation method for evaluating of voltage stability margin (MW) using the line flow equation in polar form. Here, Line flow equations $(P_{ij},\;Q_{ij}$ are comprised of state variable, $V_i,\;{\Delta}_i,\;V_j$ and ${Delta}_j$, and line parameter, r and x. using the feature of polar coordinate, these becomes one equation with two variables, $V_j,;V_j$. Moreover, if bus j is slack or generator bus, which is specified voltage magnitude in load flow calculation, it becomes one equation with one variable $V_ i $ that is, may be formulated with the second-order equation for $V^2_i$. Therefore, multiple load flow solutions may be obtained with simple computation. The obtained load flow multiple solutions are used for evaluating of voltage stability through sensitivity analysis or its closeness. Also, the method is proposed to calculate for voltage stability margin considering shunt capacitor, which is important element for evaluating of voltage stability. The proposed method was validated to sample systems.

  • PDF

The Loss of Coolant Flow Accident Analysis in Kori-1 (고리1호기 원자로 냉각재 유량상실사고 해석)

  • Kook Jong Lee;Un Chul Lee;Jin Soo Kim;Si Hwan Kim
    • Nuclear Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.256-266
    • /
    • 1985
  • The loss of coolant flow accident is analyzed for the pressurized water reactor of Korea Nuclear Unit-1. The loss of coolant flow accident is classified into three types in accordance with its severity; partial loss of coolant flow, complete loss of coolant flow and pump locked rotor accident. Analysis has been carried out in three stages; system transient and average core analysis, DNBR calculation and hot spot analysis. The purpose of developing KTRAN is to simulate the transient fast. For the DNBR calculation, the thermal hydraulic codes, SCAN and COBRA IV-1, are adopted. And for the hot spot analysis, the fuel thermal transient code LTRAN is employed. This code system should be fast responding to the transient analysis. In case the transient occurs, severity comes within a couple of seconds. So response should be fast to accomodate the following sequence of the accident. Unfortunately this purpose could not be achieved by KTRAN. However, the calculated results are well comparable with FSAR results in range. Thereby, the effectiveness of KTRAN code analysis in this type of accident is proven.

  • PDF