• Title/Summary/Keyword: Flow battery

Search Result 280, Processing Time 0.033 seconds

A Numerical Simulation of Heat and Fluid Flow for Predicting the Effect of Passage Arrangement in Automotive Heat Battery (자동차용 열전지에서 유로배열 효과 예측을 위한 열유동 수치묘사)

  • Lee, K.S.;Kwon, J.W.;Baek, C.I.;Song, Y.K.;Han, C.S.;Kim, D.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.64-73
    • /
    • 1995
  • A numerical simulation of heat and fluid flow for predicting the effect of passage arrangement in automotive heat battery has been performed. The system is assumed to be a two-dimensional laminar flow and isothermal boundary is applied to the surface of the latent heat storage vessel. In the case of ideal heat battery the flow rate into each flow passage is evenly distributed. The various models are considered in the view of pressure drop and bulk temperature. The effects on the efficiency of the heat battery are examined by varying geometrical factors such as flow passage clearance, length of a inlet and outlet tank and the length of a latent heat storage vessel. The flow clearance is a very important -factor on the efficiency of a heat battery. As the flow passage clearance becomes narrow, the flow distribution becomes uniform and the bulk temperature increases, however the pressure drop is large. Therefore, optimal flow passage clearance has to be chosen. The present work can be used in optimizing heat battery efficiency.

  • PDF

Numerical Study About Compression Effect of Porous Electrodes on the Performance of Redox Flow Batteries (다공성 전극의 압축률이 레독스흐름전지의 성능에 미치는 영향에 대한 수치해석적 연구)

  • Jeong, Daein;Jung, Seunghun
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • When designing a redox flow battery system, compression of battery stack is required to prevent leakage of electrolyte and to reduce contact resistance between cell components. In addition, stack compression leads to deformation of the porous carbon electrode, which results in lower porosity and smaller cross-sectional area for electrolyte flow. In this paper, we investigate the effects of electrode compression on the cell performance by applying multi-dimensional, transient model of all-vanadium redox flow battery (VRFB). Simulation result reveals that large compression leads to greater pressure drop throughout the electrodes, which requires large pumping power to circulate electrolyte while lowered ohmic resistance results in better power capability of the battery. Also, cell compression results in imbalance between anolyte and catholyte and convective crossover of vanadium ions through the separator due to large pressure difference between negative and positive electrodes. Although it is predicted that the battery power is quickly improved due to the reduced ohmic resistance, the capacity decay of the battery is accelerated in the long term operation when the battery cell is compressed. Therefore, it is important to optimize the battery performance by taking trade-off between power and capacity when designing VRFB system.

Effects of Initial Slug Design on the Earring of a Rectangular Battery Case During Impact Extrusion (충격압출 공정에서 초기 슬러그 디자인이 사각 배터리 케이스의 이어링에 미치는 영향 분석)

  • Lim, J. H.;Choi, S.;Chung, W. J.;Shin, J. H.;Lee, J.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.425-430
    • /
    • 2015
  • In the current paper, the effects of initial slug design on the earring of an Al rectangular battery case manufactured by impact extrusion were studied. During impact extrusion, non-uniform metal flow between the long and the short sides of the battery case leads to earring, which is subsequently trimmed. Process parameters such as friction, aspect ratio of the battery case, the die shape and the forming temperature tend to induce earring because they cause greater non-uniform metal flow. Large aspect ratio of the battery case and high friction between slug and die can greatly affect the earring of a rectangular battery case. To make a rectangular battery case without earring, it is necessary to control metal flow uniformly during impact extrusion. One of the ways to reduce the earring is to control the metal flow of slug at the initial upsetting stage. To analyze the effects of the initial slug design on earring, FE analysis was conducted using DEFORM 3D. Two types of initial slug designs were evaluated where volume was removed along either the width or thickness directions. The results show that the initial slug design can be effective in adjusting the uniformity of metal flow.

Effect of Coolant Flow Characteristics in Cooling Plates on the Performance of HEV/EV Battery Cooling Systems (하이브리드/전기 자동차 배터리 냉각 시스템의 냉각수 유동 특성이 냉각 성능에 미치는 영향에 대한 해석적 연구)

  • Oh, Hyunjong;Park, Sungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.179-185
    • /
    • 2014
  • Average temperature and temperature uniformity in a battery cell are the important criteria of the thermal management of the battery pack for hybrid electric vehicles and electric vehicles (HEVs and EVs) because high power with large size cell is used for the battery pack. Thus, liquid cooling system is generally applied for the HEV/EV battery pack. The liquid cooling system is made of multiple cooling plates with coolant flow paths. The cooling plates are inserted between the battery cells to reject the heat from batteries to coolant. In this study, the cooling plate with U-shaped coolant flow paths is considered to evaluate the effects of coolant flow condition on the cooling performance of the system. The counter flow and parallel flow set up is compared and the effect of flow rate is evaluated using CFD tool (FLUENT). The number of counter-flows and flow rate are changed and the effect on the cooling performance including average temperature, differential temperature, and standard deviation of temperature are investigated. The results show that the parallel flow has better cooling performance compared with counter flow and it is also found that the coolant flow rate should be chosen with the consideration of trade-off between the cooling performance and pressure drop.

A Design and Operation of Battery Management System for Charge and Discharge Flow Battery (플로우배터리 충방전을 위한 BMS의 설계 및 운용)

  • Ju, Jaeyeon;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.15-16
    • /
    • 2014
  • This paper proposed a construction of BMS to adopt energy storage system using flow battery. To operate flow battery system with BMS, there are motor drive system to pump electrolyte up. And it needs sensors to check leaking and temperature. The proposed system is verified by experiment.

  • PDF

A Study of Driving Dual Full-bridge Converter for Charging and Discharging Flow Battery (플로우배터리 충방전을 위한 이중 풀브릿지 컨버터 운전에 관한 연구)

  • Ju, Jaeyeon;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.317-318
    • /
    • 2014
  • This paper is proposed dual full-bridge converter to drive flow battery used battery energy storage system. The system which is proposed has additional legs at each leg to perform stripping algorithm which is necessary to drive flow battery system. The proposed system is verified by simulation.

  • PDF

A Design and Operation of Battery Management System for Energy Storage System with Zinc-Bromine Flow Battery (Zinc-Bromine 플로우 배터리용 ESS의 BMS 설계 및 운용)

  • Lim, Jong-ung;Jang, Hyeonseok;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.293-294
    • /
    • 2015
  • This paper proposed a design and operation of energy storage system using Zinc-Bromine flow battery. To operate flow battery system with BMS, it uses motor drive system to pump electrolyte. it also needs sensors to check leaking and temperature. The proposed system proves the validity by experiment.

  • PDF

A Study on the Cooling Performance Improvement of Pouch Battery Thermal Management System for Electric Vehicles (전기자동차 파우치형 배터리 열관리 시스템의 냉각성능 향상에 대한 연구)

  • Shin, Jeong-Hoon;Lee, Jun-Kyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.715-724
    • /
    • 2022
  • In many electric vehicles, large-capacity pouch-type lithium-ion battery packs are mainly used to increase the mileage on a single charge. The lithium ion battery should be operated within the temperature range of 25℃ to 40℃ because the battery performance can be rapidly deteriorated due to an increase in internal temperature. Battery thermal management system (BTMS) can give the suitable temperature conditions to battery by water cooling method. In this research, the heat transfer characteristics (the battery temperature distributions and the water flow characteristics) were analyzed by CFD method to investigate the thermal performance of the cooling plate with 4-pass water flow structure. Moreover, the effect of the presence of fins between the battery cell was identified. The fins made smooth temperature distributions between the battery cells due to the heat spreading and lower the average battery cells temperature.

Effect of Electrolyte Flow Rates on the Performance of Vanadium Redox Flow Battery (바나듐레독스흐름전지 전해질 유량에 따른 성능변화)

  • LEE, KEON JOO;KIM, SUNHOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.324-330
    • /
    • 2015
  • The electrolyte flow rates of vanadium redox flow battery play very important role in terms of ion transfer to electrolyte, kinetics and pump efficiency in system. In this paper a vanadium redox flow battery single cell was tested to suggest the optimization criteria of electrolyte flow rates on the efficiencies. The compared electrolyte circulation flow rates in this experimental work were 15, 30 and 45 mL/min. The charge/discharge characteristics of the flow rate of 30 mL/min was the best out of all flow rates in terms of charging and discharging time. The current efficiencies, voltage efficiencies and energy efficiencies at the flow rate of 30 mL/min were the best. The IR losses obtained at thd current density of $40mA/cm^2$, at the flow rates of 15, 30 and 45 mL/min were 0.085 V, 0.042 V and 0.115 V, respectively. The charge efficiencies at the current density of $40mA/cm^2$ were 96.42%, 96.45% and 96.29% for the electrolyte flow rates of 15, 30 and 45 mL/min, respectively. The voltge efficiencies at the current density of $40mA/cm^2$ were 77.34%, 80.62% and 76.10% for the electrolyte flow rates of 15, 30 and 45 mL/min, respectively. Finally, the energy efficiencies at the current density of $40mA/cm^2$ were 74.57%, 77.76% and 73.27% for the electrolyte flow rates of 15, 30 and 45 mL/min, respectively. The optimum flow rates of electrolytes were 20 mL/min in most of operating variables of vanadium redox flow battery.

A Study on the Configuration of BOP and Implementation of BMS Function for VRFB (VRFB를 위한 BOP 구성 및 BMS 기능구현에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Chung, Dong-Hwa;Park, Byung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.74-83
    • /
    • 2014
  • This paper proposes a study on the configuration of balancing of plant(BOP) and implementation of battery management system(BMS) functions for vanadium redox flow battery(VRFB) and propose a method consists of sensor and required design specifications BOP system configuration. And it proposes an method of the functions implementation and control algorithm of the BMS for flow battery. Functions of BMS include temperature control, the charge and discharge control, flow control, level control, state of charge(SOC) estimation and a battery protection through the sensor signal of BOP. Functions of BMS is implemented by the sensor signal, so it is recognized as a very important factor measurement accuracy of the data. Therefore, measuring a mechanical signal(flow rate, temperature, level) through the BOP test model, and the measuring an electrical signal(cell voltage, stack voltage and stack current) through the VRFB charge-discharge system and analyzes the precision of data in this paper. Also it shows a good charge-discharge test results by the SOC estimation algorithm of VRFB. Proposed BOP configuration and BMS functions implementation can be used as a reference indicator for VRFB system design.