• Title/Summary/Keyword: Flow Velocity

Search Result 7,040, Processing Time 0.041 seconds

Development of Pollutant Transport Model Working In GIS-based River Network Incorporating Acoustic Doppler Current Profiler Data (ADCP자료를 활용한 GIS기반의 하천 네트워크에서 오염물질의 이송거동모델 개발)

  • Kim, Dongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.551-560
    • /
    • 2009
  • This paper describes a newly developed pollutant transport model named ARPTM which was designed to simulate the transport and characteristics of pollutant materials after an accidental spill in upstream of river system up to a given position in the downstream. In particular, the ARPTM incorporated ADCP data to compute longitudinal dispersion coefficient and advection velocity which are necessary to apply one-dimensional advection-dispersion equation. ARPTM was built on top of the geographic information system platforms to take advantage of the technology's capabilities to track geo-referenced processes and visualize the simulated results in conjunction with associated geographic layers such as digital maps. The ARPTM computes travel distance, time, and concentration of the pollutant cloud in the given flow path from the river network, after quickly finding path between the spill of the pollutant material and any concerned points in the downstream. ARPTM is closely connected with a recently developed GIS-based Arc River database that stores inputs and outputs of ARPTM. ARPTM thereby assembles measurements, modeling, and cyberinfrastructure components to create a useful cyber-tool for determining and visualizing the dynamics of the clouds of pollutants while dispersing in space and time. ARPTM is expected to be potentially used for building warning system for the transport of pollutant materials in a large basin.

Analysis on Looped Stage-Discharge Relation and Its Simulation using the Numerical Model (수치모형을 이용한 고리형 수위-유량 관계 분석)

  • Kim, Ji Sung;Kim, Won;Kim, Dong Gu;Kim, Chi Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.1-9
    • /
    • 2009
  • This study is focused on the analysis of loop characteristics of stage-discharge relation which is widely used for the production of discharge data and the simulation of loop stage-discharge relation using the numerical model. Analysis of consecutive stage and discharge data at 3 points revealed that loop of stage-discharge relationship is very strong. This means that the existing single stage-discharge relation may include large amount of error. Various flood events are simulated in mainstream of Han river with one-dimensional numerical model. The calculated stage data are compared with measured data. Especially continuous field-flow measurements concurrently collected with an Acoustic Doppler Velocity Meter (ADVM) on Hangang bridge in the case of 2007 flood event are used to verify the model applicability of estimating flows in open channels. This comparison shows that numerical model is an accurate and reliable alternative for making the real stage-discharge relation. Simulation of stage-discharge relation by a numerical model at Paldang and Hangang bridge showed good agreements with measured one, so it may be possible to generate real loop stage-discharge relation with properly calibrated and verified numerical model. It can be concluded that results of this study can contribute to error analysis of conventional single stage-discharge relation and development of loop stage-discharge relation with numerical model.

Analysis of Applicability by Filter Technique for Water Level Correction of Agricultural Canal (농업용 수로부의 수위 보정을 위한 필터기법별 적용성 분석)

  • Joo, Donghyuk;Na, Ra;Kim, Ha-Young;Choi, Gyu-hoon;Yun, Hyung Chang;Park, Sang-Bin;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.51-68
    • /
    • 2023
  • Due to the recent integrated water management policy, it is important to identify a reliable supply amount for establishing an agricultural water supply plan. In order to identify the amount of agricultural water supply, it is essential to calculate the discharge by measuring the water level and flow velocity of reservoirs and canal agricultural water, and quality control to ensure reliability must be preceded. Unlike agricultural reservoirs, canal agricultural water are more sensitive to the surrounding environment and reservoir irrigation methods (continuous, intermittent irrigation, etc.), making it difficult to estimate general water level patterns and at the same time a lot of erroneous data. The Korea Rural Community Corporation is applying a filter technique as a quality control method capable of processing large quantities and real-time processing of canal agricultural water level data, and applicability evaluation is needed. In this study, the types of errors generated by the automatic water level measurement system were first determined. In addition, by using the manual quality control data, a technique with high applicability is derived by comparing and analyzing data calibrated with Gaussian, Savitzky-Golay, Hampel, and Median filter techniques, RMSE, and NSE, and the optimal parameters of the technique range was derived. As a result, the applicability of the Median filter was evaluated the highest, and the optimal parameters were derived in the range of 120min to 240min. Through the results of this study, it is judged that it can be used for quantitative evaluation to establish an agricultural water supply plan.

Effects of Cardiotonic Pills® on Cerebrovascular CO2 Reactivity and Erythrocyte Deformability in Normal Subjects: A Pilot Study

  • Sang-Kwan Moon;Han-Gyul Lee;Seungwon Kwon;Seung-Yeon Cho;Seong-Uk Park;Woo-Sang Jung;Jung-Mi Park;Chang-Nam Ko;Ki-Ho Cho
    • The Journal of Korean Medicine
    • /
    • v.44 no.4
    • /
    • pp.87-103
    • /
    • 2023
  • Backgrounds and objectives: Cardiotonic Pills® (CP) are used for vascular diseases such as coronary diseases, atherosclerosis, and cerebral infarction. This study aimed to determine the transient effects of CP on cerebrovascular CO2 reactivity (CVR) and erythrocyte deformability in normal subjects. Methods: This study had a crossover design and included 10 participants who were randomly allocated to 2 groups. The experimental group was given CP with water, while the control group was given only water. CVR was measured by hyperventilation-induced CVR of the middle cerebral artery (MCA) using transcranial Doppler (TCD). Erythrocyte deformability was measured using a Rheoscan-D microfluidic ektacytometer. All measurements were performed prior to and 1, 2, and 3 hours after CP or water administration. Blood pressure and heart rate were also measured before and after administration. Results: CP significantly improved CVR 3 hours after administration in the experimental group compared to the control group (p = 0.042). The corrected blood flow velocity at partial pressure of end-tidal carbon dioxide (PETCO2) = 40mmHg (CV40) was also significantly improved 2 and 3 hours after administration in the CP group compared to the control group (p = 0.036 and p = 0.021, respectively). CP significantly improved erythrocyte deformability 3 hours after administration in the experimental group compared to the control group (p = 0.027). Mean heart rate and mean blood pressure showed no change. Conclusions: This study demonstrated that CP increases CVR and erythrocyte deformability. These results suggested that CP improves cerebral microcirculation which provide evidence for the future use of CP for prevention of ischemic stroke and neurodegenerative diseases.

A Tracer Study on Mankyeong River Using Effluents from a Sewage Treatment Plant (하수처리장 방류수를 이용한 추적자 시험: 만경강 유역에 대한 사례 연구)

  • Kim Jin-Sam;Kim Kang-Joo;Hahn Chan;Hwang Gab-Soo;Park Sung-Min;Lee Sang-Ho;Oh Chang-Whan;Park Eun-Gyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.82-91
    • /
    • 2006
  • We investigated the possibility of using effluents from a municipal sewage treatment plant (STP) as tracers a tracer for hydrologic studies of rivers. The possibility was checked in a 12-km long reach downstream of Jeonju Municipal Sewage Treatment Plant (JSTP). Time-series monitoring of the water chemistry reveals that chemical compositions of the effluent from the JSTP are fluctuating within a relatively wide range during the sampling period. In addition, the signals from the plant were observed at the downstream stations consecutively with increasing time lags, especially in concentrations of the conservative chemical parameters (concentrations f3r chloride and sulfate, total concentration of major cations, and electric conductivity). Based on this observation, we could estimate the stream flow (Q), velocity (v), and dispersion coefficient (D). A 1-D nonreactive solute-transport model with automated optimization schemes was used for this study. The values of Q, v, and D estimated from this study varied from 6.4 to $9.0m^3/sec$ (at the downstream end of the reach), from 0.06 to 0.10 m/sec, and from 0.7 to $6.4m^2/sec$, respectively. The results show that the effluent from a large-scaled municipal STP frequently provides good, multiple natural tracers far hydrologic studies.

A Study on Anaerobic Treatment and Energy Recovery Technology of Food Waste by Using Hybrid Anaerobic Reactor (Hybrid Anaerobic Reactor를 이용한 음식물쓰레기의 혐기성처리 및 에너지 회수에 관한 연구)

  • Yoon Young-Bong;Park Jin-Young;Ju Jin-Young;Kim Myung-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.1 s.55
    • /
    • pp.64-75
    • /
    • 2005
  • The total production of food waste was about 11,398ton/day('03) in Korea. Also, food waste was treated by landfill, incineration, reuse and anaerobic digestion. The method of food waste treatment depended primarily on landfill. However, the method of landfill causing social problems was prevented to treat food waste in the first of January 2005.12) Thus, anaerobic digestion is an important method to treat food waste because of possibility of energy recovery as methane gas. In this study, the possibility of food waste treatment containing high organic material and low pH in the one stage anaerobic reactor to save cost and time and energy recovery using $CH_{4}$ gas by the hybrid anaerobic reactor (HAR) was measured. The HAR was designed by combing the merits of the anaerobic filter (AF) to minimize the microorganism shock when food waste of very low pH was injected and up-flow anaerobic sludge blanket (UASB) to prevent from plugging and channeling phenomena by large suspended solids when semi solids were injected. Granule was packed in the section of HAR. The purpose of the BMP experiment was to measure the amount of methane generated when organic material was resolved under anaerobic conditions, to grasp bio resolution of organic material. Total accumulated methane production per VS amount was $0.471(m^{3}/\cal{kg}\;VS)$. So, the value was about $81.2\%$ of theoretical methane production which was $0.58(m^{3}/\cal{kg}\;VS)$ by elementary analysis and organic matter removal velocity (K) was $0.18(d^{-1})$. From these results, food waste was treated by anaerobic treatment. From this study, $CH_{4}$ generation from food waste (11,398 ton/day) could be estimated. By using an energy conversion factor of Braun's study, $5.97KWh/m^{3}\;CH4,\;60\%\;of\;CH_{4}$ gas generation, the amount of total energy producing food waste is to 6,727MWh/day. It could be confirmed that energy recovery using $CH_{4}$ gas was possible. Above these results, food waste containing organic matters of high concentration could be treated in HRT 30 days under an anaerobic condition, using the hybrid anaerobic reactor and reuse of $CH_{4}$ gas was possible.

Net Shapes of the Model Pound net according to Added Sinker - In case of the upperward flow with fish court net - (부가중량추에 따른 모형 정치망의 형상변화 - 운동장이 湖上側인 경우 -)

  • Yun, Il-Bu;Lee, Ju-Hee;Kwon, Byeong-Guk;Yoo, Jae-Bum;Cho, Young-Bok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • There are several problems in the commercial pound net in the heavy tide ; the breaking and loss of net, steeply variation of net shape and decreasing of fishing efficiency, etc. In order to solve these problems, we introduced method of added sinker used to coastal cultivating cage of Japan and investigated the possibility of application to the Korean pound net. The results are obtained as follows; 1. In case of the upperward flow with fish court net, tension of the frame line was increased about 10${\sim}$25% than that of prototype according to the added sinker from 1.3gf to 5.2gf. The tension of A-type and B-type was similar to the case of the prototype, the tension of C-type and D-type was increased about 10${\sim}$15% than that of prototype. 2. The variation of deformed angle of fish court net was from 0$^{\circ}$ to 70$^{\circ}$ and that of the slope net was from 0$^{\circ}$ to 64$^{\circ}$ and that of the second bag net was from 0$^{\circ}$ to 46$^{\circ}$ and the depth of the second bag net was increased about 10% when the added sinker was changed from 1.3gf to 5.2gf. The depth of the first bag net and the second bag net were decreased about 50% than that of initial depth. 3. For the deformed angle of fish court net according to the attached point of the added sinker, A-type and B-type were decreased about 25% and 10% than the prototype, respectively. C-type was similar to the case of the prototype and D-type was increased about 15% than that of the prototype. The depth of slope net became deep in turn of A-type, B-type, C-type and D-type. For the depth of the second bag net, A-type, B-type, C-type and D-type were increased about 10${\sim}$15% than that of prototype. The depth of the slope net was changed from 0$^{\circ}$ to 63$^{\circ}$ and that of the second bag net was changed from 0${\sim}$44$^{\circ}$ according to the increase of velocity. 4. The optimal weight of added sinker was about 2.6${\sim}$3.6gf and the optimal attached point of added sinker was the case of C-type and D-type.

A Three-Dimensional Modeling Study of Lake Paldang for Spatial and Temporal Distributions of Temperature, Current, Residence Time, and Spreading Pattern of Incoming Flows (팔당호 수온, 유속, 체류시간의 시.공간적 분포 및 유입지류 흐름에 관한 3차원 모델 연구)

  • Na, Eun-Hye;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.978-988
    • /
    • 2005
  • A three-dimensional dynamic model was applied to Lake Paldang, Han River in this study. The model was calibrated and verified using the data measured under different ambient conditions. The model results were in reasonable agreements with the field measurements in both calibration and verification. Utilizing the validated model, we analyzed the spatial and temporal distributions of temperature, current, residence time, and spreading pattern of incoming flows within the lake. Relatively low velocity and high temperature were computed at the surface layer in the southern region of the Sonae island. The longest residence time within the lake was predicted in the southern region of the Sonae island and the downstream region of the South Branch. This can be attributed to the fact that the back currents caused by the dam blocking occur mainly in these regions. Vertical thermal profiles indicated that the thermal stratifications would be occurred feebly in early summer and winter. During early spring and fall, it appeared that there would be no discernible differences at the vertical temperature profiles in the entire lake. The vertical overturns, however, do not occur during these periods due to an influence of high discharge flows from the dam. During midsummer monsoon season with high precipitation, the thermal stratification was disrupted by high incoming flow rates and discharges from the dam and very short residence time was resulted in the entire lake. In this circulation patterns, the plume of the Kyoungan stream with smallest flow rate and higher water temperature tends to travel downstream horizontally along the eastern shore of the south island and vertically at the top surface layer. The model results suggest that the Paldang lake should be a highly hydrodynamic water body with large spatial and temporal variations.

Development of Rain Shelter for Chinese Cabbage Rainproof Cultivation (배추재배용 비가림하우스 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Moon, Doo Gyung
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.293-302
    • /
    • 2014
  • This study was carried out to develop rain shelter which can make an appropriate size and environment for Chinese cabbage rainproof cultivation. Fifty three farms with chinese cabbage rainproof cultivation system have been investigated to set up width and height of rain shelter. Mostly the width of 6m was desired for rain shelter and the height of 1.6m for their eaves, so these values were chosen as the dimensions for rain shelter. After an analysis of their structural safety and installation costs by the specifications of the rafter pipe, Ø$25.4{\times}1.5t$ and 90cm have been set as the size of rafter that such size costs the least. This size is stable with $27m{\cdot}s^{-1}$ of wind velocity and 17cm of snow depth. Therefore it is difficult to apply this dimension to area with higher climate load. In order to sort out such problem, the rain shelter has been designed to avoid damage on frame by opening plastic film to the ridge. Once greenhouse band is loosen by turning the manual switch at the both sides of rain shelter and open button of controller is pushed then switch motor rises up along the guide pipe and plastic film is opened to the ridge. Chinese cabbage can be damaged by insects if rain shelter is opened completely as revealed a field. To prevent this, farmers can install an insect-proof net. Further, the greenhouse can be damaged by typhoon while growing Chinese cabbage therefore the effect of an insect-proof net on structural safety has been analyzed. And then structural safety has been analyzed through using flow-structure interaction method at the wind condition of $40m{\cdot}s^{-1}$. And it assumed that wind applied perpendicular to side of the rain shelter which was covered by insect-proof net. The results indicated that plastic film was directly affected by wind therefore high pressure occurred on the surface. But wind load on insect-proof net was smaller than on plastic film and pressure distribution was also uniform. The results of structural analysis by applying pressure data extracted from flow analysis indicated that the maximum stress occurred at the end of pipe which is the ground part and the value has been 54.6MPa. The allowable stress of pipe in the standard of structural safety must be 215 MPa or more therefore structural safety of this rain shelter is satisfied.

CO2 Exchange in Kwangneung Broadleaf Deciduous Forest in a Hilly Terrain in the Summer of 2002 (2002년 여름철 경사진 광릉 낙엽 활엽수림에서의 이산화탄소 교환)

  • Choi, Tae-jin;Kim, Joon;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.70-80
    • /
    • 2003
  • We report the first direct measurement of $CO_2$ flux over Kwangneung broadleaf deciduous forest, one of the tower flux sites in KoFlux network. Eddy covariance system was installed on a 30 m tower along with other meteorological instruments from June to August in 2002. Although the study site was non-ideal (with valley-like terrain), turbulence characteristics from limited wind directions (i.e., 90$\pm$45$^{\circ}$) was not significantly different from those obtained at simple, homogeneous terrains with an ideal fetch. Despite very low rate of data retrieval, preliminary results from our analysis are encouraging and worthy of further investigation. Ignoring the role of advection terms, the averaged net ecosystem exchange (NEE) of $CO_2$ ranged from -1.2 to 0.7 mg m$^{-2}$ s$^{-1}$ from June to August in 2002. The effect of weak turbulence on nocturnal NEE was examined in terms of friction velocity (u*) along with the estimation of storage term. The effect of low uf u* NEE was obvious with a threshold value of about 0.2 m s$^{-1}$ . The contribution of storage term to nocturnal NEE was insignificant; suggesting that the $CO_2$ stored within the forest canopy at night was probably removed by the drainage flow along the hilly terrain. This could be also an artifact of uncertainty in calculations of storage term based on a single-level concentration. The hyperbolic light response curves explained >80% of variation in the observed NEE, indicating that $CO_2$ exchange at the site was notably light-dependent. Such a relationship can be used effectively in filling up the missing gaps in NEE data through the season. Finally, a simple scaling analysis based on a linear flow model suggested that advection might play a significant role in NEE evaluation at this site.