CO2 Exchange in Kwangneung Broadleaf Deciduous Forest in a Hilly Terrain in the Summer of 2002

2002년 여름철 경사진 광릉 낙엽 활엽수림에서의 이산화탄소 교환

  • Choi, Tae-jin (Global Environmental Laboratory/Department of Atmospheric Sciences, Yonsei University) ;
  • Kim, Joon (Global Environmental Laboratory/Department of Atmospheric Sciences, Yonsei University) ;
  • Lim, Jong-Hwan (Division of Forest Ecology, Korea Forest Research Institute)
  • 최태진 (연세대학교 지구환경연구소/대기과학과) ;
  • 김준 (연세대학교 지구환경연구소/대기과학과) ;
  • 임종환 (임업연구원 산림생태과)
  • Published : 2003.06.01

Abstract

We report the first direct measurement of $CO_2$ flux over Kwangneung broadleaf deciduous forest, one of the tower flux sites in KoFlux network. Eddy covariance system was installed on a 30 m tower along with other meteorological instruments from June to August in 2002. Although the study site was non-ideal (with valley-like terrain), turbulence characteristics from limited wind directions (i.e., 90$\pm$45$^{\circ}$) was not significantly different from those obtained at simple, homogeneous terrains with an ideal fetch. Despite very low rate of data retrieval, preliminary results from our analysis are encouraging and worthy of further investigation. Ignoring the role of advection terms, the averaged net ecosystem exchange (NEE) of $CO_2$ ranged from -1.2 to 0.7 mg m$^{-2}$ s$^{-1}$ from June to August in 2002. The effect of weak turbulence on nocturnal NEE was examined in terms of friction velocity (u*) along with the estimation of storage term. The effect of low uf u* NEE was obvious with a threshold value of about 0.2 m s$^{-1}$ . The contribution of storage term to nocturnal NEE was insignificant; suggesting that the $CO_2$ stored within the forest canopy at night was probably removed by the drainage flow along the hilly terrain. This could be also an artifact of uncertainty in calculations of storage term based on a single-level concentration. The hyperbolic light response curves explained >80% of variation in the observed NEE, indicating that $CO_2$ exchange at the site was notably light-dependent. Such a relationship can be used effectively in filling up the missing gaps in NEE data through the season. Finally, a simple scaling analysis based on a linear flow model suggested that advection might play a significant role in NEE evaluation at this site.

본 연구에서는 KoFlux네트워크 타워 관측소의 하나인 광릉 낙엽 활엽수림에서 최초로 직접 관측된 이산화탄소 플럭스를 보고한다. 2002년 6월부터 8월까지 에디 공분산 시스템을 다른 기상 관측 기기들과 함께 30 m 타워에 설치하였다. 관측 장소가 계곡과 같은 경사지에 위치해 있음에도 불구하고 관측된 난류 특성이, 제한된 풍향(즉, 90$\pm$45$^{\circ}$)의 경우, 평평하고 균질한 이상적인 장소에서 관측된 것들과 크게 다르지 않았다. 관측 자료 회수율은 비록 낮았으나, 분석된 예비 결과는 고무적이고, 연구해야 할 가치가 있는 것으로 나타났다. 이류 항을 무시하면, 생태계의 순 $CO_2$ 교환(NEE)은 6월에서 8월까지 약 -1.2에서 0.7 mg m$^{-2}$ s$^{-1}$의 범위를 보였다. 약한 난류가 야간 NEE에 미치는 효과를 마찰 속도(u*)및 저류 항의 산출과 관련하여 살펴보았다. 낮은 u*가 NEE에 미치는 영향은 약 0.2 m s$^{-1}$의 문턱 값을 기점으로 뚜렷하게 나타났다. 야간 NEE에 미치는 저류 항의 역할은 거의 나타나지 않았는데, 이는 밤 동안 산림 내에 축적된 $CO_2$가 경사면을 따라 배수류로 빠져나갔기 때문인 것으로 사료된다. 이는 또한 저류 항을 한 높이에서만 관측된 농도 자료를 사용함으로 생긴 오차로 인한 인위적인 결과일 수도 있다. 쌍곡선 광 반응식을 적용한 결과, 관측된 NEE 변화의 80% 이상이 설명되어, 이 산림 지역의 $CO_2$ 교환이 주로 빛에 의해 조절됨을 보여주었다. 이러한 관계식은 계절에 걸쳐 빠진 자료를 채워 넣는 자료 처리 과정에 효과적으로 사용될 수 있다. 마지막으로, 선형류 모형에 근거한 간단한 규모 분석에 의하면, 이류항의 효과가 NEE산출에 큰 영향을 미칠 수 있는 것으로 나타났다.

Keywords

References

  1. Anthoni, P. M., M. H. Unsworth, B. E. Law, J. Irvine, D. D. Baldocchi, S. V. Tuyl and D. Moore, 2002: Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems, Agricultural and Forest Meteorology, 111, 203-222. https://doi.org/10.1016/S0168-1923(02)00021-7
  2. Aubinet M., A. Grelle, A. Ibrom, U. Rannik, J. Moncrieff, T. Foken, A. S. Kowalski, P. H. Martin, P. Berbigier, C. Bernhofer, R. Clement, J. Elbers, A. Granier, T. Grunwald, K. Morgenstern, K. Pilegaard, C. Rebmann, W. Snijders, R. Valentini and T. Vesala, 2000: Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology. Advances in Ecological Research, 30, 113-175.
  3. Aubinet, M., B. Heinesch and B. Longdoz, 2002: Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections, heterogeneity of the site and interannual variability, Global Change Biology, 8, 1,053-1,071.
  4. Baldocchi, D., E. Falge, L. Gu, R. Olson, D. Hollinger, S. Running, P. Anthoni, C. Bernhofer, K. Davis, R. Evans, J. Fuentes, A. Goldstein, G. Katul, B. Law, X. Lee, Y. Malhi, T. Meyers, W. Munger, W. Oechel, K. T. Paw U, K. Pilegaard, H. P. Schmid, R. Valentini, S. Verma, T. Vesala, K. Wilson and S. Wofsy, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bulletin of the American Meteorological Society, 82, 2415-2434.
  5. Beljaars, A. C. M., P. Schotanus and F. T. M. Nieuwstadt, 1983: Surface layer similarity under nonuniform fetch conditions, Journal of Climate and Applied Meteorology, 22, 1800-1810.
  6. Buchman, N. and E.-D. Schulze, 1999: Net $CO_2$ and $H_2O$ fluxes of terrestrial ecosystems, Global Biogeochemical Cycles, 13(3), 751-760.
  7. Chae, N.-Y., J. Kim, D. Kim, D. Lee, R.-H. Kim, J. Ban and Y. Son, 2003: Measurement of Soil $CO_2$ Efflux Using a Closed Dynamic Chamber System, this issue.
  8. De Bruin, H. A. R., N. J. Bink and L. J. M. Kroon, 1991: Fluxes in the surface layer under advective conditions, In: Schmugge T. J., Andre J. C. (Eds.) Workshop on land surface evaporation measurement and parameterization, Springer, Berlin Heidelberg New York, pp. 157-169.
  9. De Bruin, H. A. R. and A. Verhoef, 1996: A new method to determine the zero-plane displacement, Boundary-Layer Meteorology, 82, 159-164.
  10. Falge, E., D. Baldocchi, R. Olson, P. Anthoni, M. Aubinet, C. Bernhofer, G. Burba, R. Ceulemans, R. Clement, H. Dolman, D. Graniew, P. Gross, T. Grunwald, D. Hollinger, N.-O. Jnesen, G. Katul, P. Keronen, A. Kowalski, C. T. Lai, B. E. Law, T. Meyers, J. Moncrieff, E. Moors, J. W. Munger, K. Pilegaard, U. Rannik, C. Rebmann, A. Suker, J. Tenhunen, K. Tu, S. Verma, T. Vesala, K. Wilson and S. Wofsy, 2001: Gap filling strategies for defensible annual sums of net ecosystem exchange, Agricultural and Forest Meteorology, 107, 43-69.
  11. Finnigan, J. J., R. Clement, Y. Malhi, R. Leuning and H. A. Cleugh, 2003: A re-evaluation of long-term flux measurement techniques. Part 1: Averaging and Coordinate Rotation, Boundary-Layer Meteorology, 107, 1-48.
  12. Finnigan, J. J., R. Clement, Y. Malhi, R. Leuning and H. A. Cleugh, 2003: A re-evaluation of long-term flux measurement techniques. Part 1: Averaging and Coordinate Rotation, Boundary-Layer Meteorology, 107, 1-48.
  13. Goulden, M. L., J. W. Munger, S.-M. Fan, B. C. Daube and S. C. Wofsy, 1996: Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy, Global Change Biology, 2, 169-182.
  14. Granier, A., M. Aubinet, D. Epron, E. Falge, J. Umundsson, N. O. Jenssen, B. Kostner, G. Matteucci, K. Pilegaard, M. Schmidt and J. Tenhunen, 2003: Deciuous Forest (Beech): Carbon and Water Fluxes, Balances, Ecological and Ecophysiological Determinants, In: R. Valentini (Eds.), Fluxes of Carbon, Water and Energy of European Forests, Springer-Verlag Berlin Heidelberg, 55-70.
  15. Greco, S. and D. Baldocchi, 1996: Seasonal variations of $CO_2$ and water vapor exchange rates over a temperate deciduous forest, Global Change Biology, 2, 183-197.
  16. Gu, L., J. D. Fuentes, H. H. Shugart, R. M. Staebler and T. A. Black, 1999: Responses of net ecosystem exchange of carbon dioxide to changes in cloudiness: results from two north American deciduous forests, Journal of Geophysical Research, 104, 31,421-31,434.
  17. Hollinger, D. Y., F. M. Kelliher, J. N. Byers, J. E. Hunt, T. M. McSeveny and P. L. Weir, 1994: Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere, Ecology, 75(1), 134-150.
  18. Hollinger, D. Y., S. M. Goltz, E. A. Davidson, J. T. Lee, K. Tu and H. T. Valentine, 1999: Seasonal patters and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest, Global Change Biology, 5, 891-902.
  19. Hong, J. and J. Kim, 2002: On processing raw data from micrometeorological field experiment, Korean Journal of Agricultural and Forest Meteorology, 4, 119-126.
  20. Jackson, P. S. and J. C. R. Hunt, 1975: Turbulence wind flow over a low will, Quarterly Journal of Royal Meteorological Society, 101, 929-955.
  21. Kaimal, J. and J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, New York. 289pp.
  22. Kim, J., W. Kim, C. -H. Cho, B. C. Choi, H. S. Chung, B. L. Lee, K. H. Kim, K. R. Kim, M. Y. Kim, B. Y. Lee, G. W. Lee, J. T. Lee, J. H. Lim, H. H. Oh, E. W. Park, J. S. Shim, J. I. Yun and C. S. Rho, 2002: KoFlux: A new tool to study the biosphere-atmosphere interactions in Asia, In: D. Lee (Eds.) Ecology of Korea, 215-229.
  23. Law, B. E., E. Falge, L. Gu, D. D. Baldocchi, P. Bakwin, P. Berbigier, K. Davis, A. J. Dolman, M. Falk, J. D. Fuentes, A. Goldstein, A. Graniew, A. Grelle, D. Hollinger, I. A. Janssens, P. Jarvis, N. O. Jensen, G. Katul, Y. Mahli, G. Matteucci, T. Meyers, R. Monson, W. Munger, W. Oechel, R. Olson, K. Pilegaard, K. T. Paw U, H. Thorgeisson, R. Valentini, S. Verma, T. Vesala, K. Wilson and S. Wofsy, 2002: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113, 97-120.
  24. Lee, X., 1998: On micrometeorological observations of surface-air exchange over tall vegetation, Agricultural and Forest Meteorology, 91, 39-49.
  25. Lee, X., J. D. Fuentes, R. M. Staebler and H. H. Neumann, 1999: Long-term observation of the atmosphere exchange of $CO_2$ with a temperate deciduous forest in southern Ontario, Canada, Journal of Geophysical Research, 104(D13), 15,957-15,984.
  26. Lim, J.-H., J. Shin, G. Jin, J. Chun and J. Oh, 2003: Forest Stand Structure, Site Characteristics and Carbon Budget of the Kwangneung Natural Forest in Korea, this issue.
  27. Massman, W. J. and X. Lee, 2002: Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges, Agricultural and Forest Meteorology, 113, 121-144.
  28. Michaelis, L. and M. L. Menten, 1913: Die kinetic der invertinwirkung, Biochemische Zeitschrift, 49, 333.
  29. Moncrieff, J. B., Y. Malhi and R. Leuning, 1996: The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water, Global Change Biology, 2, 231-240.
  30. Panofsky, H. A., D. Larko, R. Lipschutz, G. Stone, E. F. Bradley, A. J. Bowen and H. Højstrup, 1982: Spectra of velocity components over complex terrain, Quarterly Journal of Royal Meteorological Society, 108, 215-230.
  31. Park, Y., 2001: Evapotranspiration and its controlling factors in the two adjacent forests in Kwangneung Arboretum, Korea, Master thesis. Department of Atmospheric Sciences. Yonsei University, Seoul, Korea. 45 pp.
  32. Paw U, K. T., D. D. Baldocchi, T. P. Meyers and K. B. Wilson, 2000: Correction of eddy covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorology, 97, 487-511.
  33. Pilegaard, K., P. Hummelshøj, N. O. Jensen and Z. Chen, 2001: Two years of continuous $CO_2$ eddy-flux measurements over a Danish beech forest, Agricultural and Forest Meteorology, 107, 29-41.
  34. Schimid, H. P., C. S. B. Grimmond, F. Cropley, B. Offerle and H.-B. Su, 2000: Measurements of $CO_2$ and energy fluxes over a mixed hardwood forest in the mid-western United States, Agricultural and Forest Meteorology, 103, 357-374.
  35. Taylor, P. A., P. J. Mason and E. F. Bradley, 1987:Boundary-Layer Flow over low hills, Boundary-Layer Meteorology, 39, 107-132.
  36. Valentini, R., De Angelis, G. Matteucci, R. Monaco, S. Dore and G. E. Scarascia Mugnozza, 1996: Seasonal net carbon dioxide exchange of a beech forest with the atmosphere, Global Change Biology, 2, 199-207.
  37. Webb, E. K., G. I. Perman and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water transfer, Quarterly Journal of Royal Meteorological Society, 106, 86-100.
  38. Wesely, M. L. 1970: Eddy correlation measurements in the atmospheric surface layer over agricultural crops. Dissertation. University of Wisconsin, Madison, Wisconsin, USA.
  39. Whiteman, D., 2000: Mountain meteorology; Fundamentals and Applications, Oxford University Press, 355 pp
  40. Wilczak, J., S. P. Oncley and S. A. Stage, 2001: Sonic anemometer tile correction algorithms, Boundary-Layer Meteorology, 99, 127-150.