• Title/Summary/Keyword: Flow System

Search Result 14,975, Processing Time 0.076 seconds

Performance Evaluation of Closed Manufacturing Systems with Sampling Inspections (샘플링 검사가 수행되는 폐쇄형 생산 시스템의 성능분석)

  • Lee, Hyo-Seong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.1
    • /
    • pp.123-140
    • /
    • 1997
  • In this paper we consider closed flow line systems with samploing inspections. The total number of parts in the system is assumed to be N. The processings carried out of each station do not always meet the requirement of quality. Therefore, upon completion of its processing at each station, a part is inspected to determine whether the processings meet the requirement of quality or not. We assume that inspection are done on a random basis. If a part is found to be defective by an inspection, it is fed back to the apropriate station. Two different cases will be considered in this study : a three-station flow line system with infinite buffers and a two-station flow line system with finite buffers. For each case, we will develop an exact method to obtain the performance measures such as throughput, machinen utilization, average outgoing quality and manufacturing lead time. For the case of the two-station flow line system ith finite buffers, we will also develop an approximation method using a stage-aggregation technique. Then using buffers, we will also develop an approximation method using a stage-aggregation technique. Then using these results, we will try to find an optimal inspection policy which maximizes the expected net profit under a certain cost structure. Although we present the results only for the two or three station flow line system in this paper, the results obtained in this paper can be extended easily to the system which consists of more than two or three stations.

  • PDF

A Study on Thermal and Modal Characteristics for EGR System with Dimpled Rectangular Tube (딤플 사각 튜브형 배기 가스 재순환 시스템의 열 및 진동 특성에 관한 연구)

  • Seo, Young-Ho;Heo, Sung-Chan;Kwon, Young-Seok;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.115-125
    • /
    • 2008
  • Recently, Exhaust Gas Recirculation (EGR) system which re-flow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine has been used to solve the serious air pollution. For the design and mass production of EGR system, it is essential to ensure structural integrity evaluation. The EGR system consisted of ten dimpled oval core rectangular tubes, two fix-plates, two coolant pipes, shell body and two flanges in this study. To confirm the safety of the designed system, finite element modeling about each component such as the dimpled oval core tube with the dimpled shape and others was carried out. The reliability of EGR system against exhaust gas flow with high temperature was investigated by flow and pressure analysis in the system. Also, thermal and strength analysis were verified the safety of EGR system against temperature change in the shell and tubes. Furthermore, modal analysis using ANSYS was also performed. From the results of FE analysis, there were confirmed that EGR system was safe against the flow of exhaust gas, temperature change in EGR system and vibration on operation condition, respectively.

A COMPUTATIONAL ANALYSIS FOR OUTLET SHAPE DESIGN TO SUPPRESS FLOW RECIRCULATION IN A ROTATING-DISK CVD REACTOR (회전원판형 CVD 장치의 유동 재순환을 억제하는 출구부 형상 설계를 위한 전산해석)

  • Park, J.J.;Kim, K.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.74-81
    • /
    • 2013
  • A numerical design analysis is conducted to search for an optimal shape of outlet in a rotating-disk CVD reactor. The goal is to suppress flow recirculation that has been found in a reactor having a sudden expansion of flow passage outside of the rotating disk. In order to streamline gas flow, the sidewall at which the flow in the Ekman layer is impinged, is tilted. The axisymmetric laminar flow and heat transfer in the reactor are simulated using the incompressible ideal gas model. For the conventional vertical sidewall, the flow recirculation forming in the corner region could be expanded into the interior to distort the upstream flow. The numerical results show that this unfavorable phenomenon inducing back flow could be dramatically suppressed by tilting the sidewall at a certain range of angle. The assessment of deviation in deposition rate based on the characteristic isotherm illustrates that the sidewall tilting may expand the domain of stable plug-like flow regime toward higher pressure. A physical interpretation is attempted to explain the mechanism to suppress flow recirculation.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Network Analysis of Engine Lubrication System

  • Chun, Sang-Myung;Park, Young-Hwan;Siyoul Jang
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.126-133
    • /
    • 2000
  • A computer program for the analysis of engine lubrication systems has been developed. And a case study of a four cylinders gasoline engine is illustrated. This paper gives the mathematical models for oil flow through hydraulic tappet as well as the ones of oil jet and plain journal bearings. And the new from an oil pump and the flow resistance through an oil filter is considered at various temperatures. In the analysis, the various design guidelines are applied. The distribution of flow and pressure of an engine lubrication system are calculated, and the pressure data compared with the experimental data at a few points in the engine lubrication system. This method is helpful to design of engine lubrication system efficiently.

  • PDF

Engineering Applications of Jet Impingement Associated with Vertical Launching System Design

  • Hong, Seung-Kyu;Lee, Kwang-Seop
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.67-75
    • /
    • 2002
  • In the course of missile system design, jet plume impingement is encountered in designing airframe as well as launchers, requiring careful investigation of its effect on the system. In the present paper, recent works on such topic are presented to demonstrate usefulness of CFD results in helping design the hardware. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. The main parameters are the ratio of the jet pressure to the ambient pressure and the distance between the nozzle and the wall. In the current application, the nozzle contour and the pressure ratio are held fixed, but the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. The same methodology is then applied to a complex vertical launcher system (VLS), capturing its flow structure and major design parameter. These applications involving jets are thus hoped to demonstrate the usefulness and value of CFD in designing a complex structure in the real engineering environment.

The Factors Affecting Patient-Flow (환자흐름에의 영향요인)

  • 박재용
    • Health Policy and Management
    • /
    • v.3 no.2
    • /
    • pp.27-80
    • /
    • 1993
  • It is widely known that patients' utilization pattern for medical care facilities and the patientflow are influenced by multi-factors, such as demographic characteristics, structural characteristics of society, socio-psychological characteristics(value, attitude, norms, culture, health behavior, etc.), economic characteristics(income, medical price, relative price, physician induced demand, etc.), geographical accessibility, systematic characteristics(health care delivery system, payment methods for physician fees, form of health care security, etc.), and characteristics of medical facilities(reliability, quality of medical care, convenience, kindness, tec.). This study was conducted to research the mechanism of patient-flow according to changes of health care system(implementation of national health insurance, health care referral system and regionalization of health care utilization, etc.) and characteristics of medical facilities(ownership of hospital, characteristics of medical services, non-medical characteristics, etc.). In this study, the fact could be ascertained that the patient-flow had been influenced by changes of health care system and characteristics of medical facilities.

  • PDF

The Effects of Operational Conditions of Cooling Water System on Energy Consumption for Central Cooling System (냉각수 계통의 운전변수가 중앙냉방시스템의 에너지소비량에 미치는 영향)

  • Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.8-13
    • /
    • 2017
  • The effects of operational conditions of cooling water system on energy consumption for central cooling system are researched by using TRNSYS program. Cooling tower water pump flow rate, cooling tower fan flow rate, and condenser water temperature with various dry-bulb and wet-bulb temperatures are varied and their effects on total and component power consumption are studied. If the fan maximum flow rates of cooling tower is decreased, cooling tower fan and total power consumptions are increased. If the cooling tower water pump maximum flow rates is decreased, chiller and total power consumptions are increased. If condenser water set-point temperature is increased, chiller power consumption is increased and cooling tower fan power consumption is decreased, respectively.