• 제목/요약/키워드: Flow System

검색결과 14,894건 처리시간 0.04초

CORRELATION BETWEEN THE OPENING ANGLE OF A LOUVER AND FLOW RATE FOR THE EFFICIENT CONTROL OF A LARGE FAN (대형 팬의 효율적 유량 조절을 위한 루버 개폐각 상관관계)

  • Noh, T.H.;Lee, S.J.;Chang, S.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.272-276
    • /
    • 2007
  • In this paper, we researched a parametric study in flow control system using louver with numerical method. Generally, for the large fans with constant rotational speed, the louver can be used to control the flow rate. The opening and closing of louver can make a some change of flow properties generated by a large fan. To develope the relation between the opening angle of louver and flow rate(or pressure difference), we simulated the flow past the modelled louver installed in a virtual wind tunnel. For the various angles, the mean flow properties are investigated and parameterized with a given boundary condition. The research result can be used directly to design the flow control system of large constant-speed fans, which are often applied to petrolic refinery system.

  • PDF

Application of the Through-Transmitted Ultrasonic Signal for the Identification of Two-Phase Flow Patterns in a Simulated High Temperature Vertical Channel

  • Chu In-Cheol;Song Chul-Hwa;Baek Won-Pil
    • Nuclear Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.12-23
    • /
    • 2004
  • In the present study a new measurement technique has been developed, which uses an ultrasonic transmission signal in order to identify the vertical two phase flow pattern. The ultrasonic measurement system developed in the present study not only provides the information required for the identification of vertical two phase flow patterns but also makes real time identification possible. Various vertical two phase flow patterns such as bubbly, slug, churn, annular flow etc. have been accurately identified with the present ultrasonic measurement system under atmospheric condition. In addition, the present test apparatus can practically simulate the ultrasonic propagation characteristics under high temperature and high pressure systems. Therefore, it is expected that the present ultrasonic flow pattern identification technique could be applicable to the vertical two phase flow systems under high temperature and high pressure conditions.

A Study on the Characteristics of Flow through a Valve using Exhaust System Engine Simulator (기관 배기계 모의실험장치를 이용한 밸브를 통과하는 유동특성에 관한 연구)

  • 차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.124-130
    • /
    • 1999
  • Flow characteristics of a compressible gas flow through a rotating disc-type rotary valve are investigated experimentally under various conditions. It is known that the mass flow rate through poppet valves of 4-stroke cycle engines and through piston valves of 2-stoke cycle engines decrease with increase in engine speed. Rotary valve is one means by which air may be made to flow inter-mittently through a pipe. In this paper an exhaust system simulator of engine was used to experi-mentally analyze the decrease in flow rate at high rotation speeds and to determine what variables other than rotational speed give rise to the observed behaviour. These variables have been included in an empirical equation which is representative of the measured flow characteristics.

  • PDF

The Complex Travelling Wave by Two Directional Differential Flow Induced Chemical Instability

  • 신수범;최상준;허도성;Kenneth Showalter
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권4호
    • /
    • pp.411-416
    • /
    • 1999
  • A new kind of differential flow induced chemical wave is introduced by theoretical calculation. A differential flow between the counter acting species of a dynamical activator-inhibitor system may destabilize its homogeneous reference state and cause the medium to self-organize into a pattern of travelling waves through the differential flow instability (DIFI). In a chemical system, also, the differential bulk flow may change the dynamics of the system, thus it has been refered to as the differential flow induced chemical instability (DIFICI). For DlFICI experiments, one directional flow has been commonly employed, resulting in periodic wave patterns generally. In this study, we considered two directional flow for the DIFICI wave by exchanging artificially the flow direction at some period.

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권1호
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.

A Study on the Geothermal Heat Pump System Performance Analysis according to Water Flow Rate Control of the Geothermal Water Circulation Pump (지열순환펌프 유량변화에 따른 지열히트펌프시스템의 에너지 성능 평가)

  • Jung, Young-Ju;Jo, Jae-Hun;Kim, Yong-Shik;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • 제34권6호
    • /
    • pp.103-109
    • /
    • 2014
  • It is important to control the amount of supply water flow rate at all kinds of HVAC systems in order to maintain IAQ and energy efficiency. The most of buildings installed geothermal heat pumps is using fixed water flow rate in spite of the excellent performance of geothermal heat pumps. Especially when the air-conditioning load is low, the flow rate control may be possible to save energy to operate. However, it is effective to apply the variable flow control system in order to reduce energy consumption. Therefore, the purpose of this study, change a water flow rate and improve the whole performance of the geothermal heat pump. Geothermal heat pump system is modeled after the selection of the applied building, by setting the flow rate control to be analyzed through a simulation of performance evaluation. Building energy saving according to the flow rate of the ground circulating water analyze quantitatively and to investigate the importance of the flow control.

Study on the Effects of the Flow Characteristics and Size on the Peformance of Molten Carbonate Fuel Cells Using CFD (CFD를 통한 용융탄산염 연료전지의 유동 및 크기에 따른 운전 특성 분석)

  • KIM, DONG-WOO;KIM, HA-YOUNG;CHOI, JEONG-HWAN;LEE, CHANG-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제30권2호
    • /
    • pp.147-154
    • /
    • 2019
  • In this study, effects of flow types and size of molten carbonate fuel cells (MCFCs) were investigated using CFD simulation. In the simulation, the current collector of MCFCs were assumed to be an porous media. With the area of $0.09m^2$, the effect of flow types such as Co-flow, Counter-flow, Cross-flow were studied. After that the effect of the size and flow direction was studied. Among three-flow types, MCFCs with co-flow type shows more uniform distribution and current density distribution.

Examination on High Vibration and Branch Vent Pipe's Failure of Complex Piping System Suppling Condensate-Water in Power Site (발전소 복수 공급 배관계의 고진동과 분기 배기배관의 절손 규명)

  • Kim, Yeon-Whan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.380-384
    • /
    • 2010
  • A disturbance flow at piping bands and discontinuous regions such as a valve, a header has a intense broadband internal pressure field and a sound field which are propagated through the piping system The fields becomes the source of a vibration of this piping system. Intense broadband disturbance flow at a discontinuous region such as elbows, valves or headers generates an acoustical pulsation. The pulsation becomes the source of structural vibration at the piping system. If it coincides with the natural frequency of the pipe system, excessive vibration results. High-level vibration due to the pressure pulsation affects the reliability of the plant piping system. This paper discusses the high vibration and the branch vent pipe's failure of condensate-water supply piping system due to the effect of acoustical pulsations by flow turbulence from the flow control valves of globe type in a power site.

  • PDF

Methodology of Cyber Security Assessment in the Smart Grid

  • Woo, Pil Sung;Kim, Balho H.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.495-501
    • /
    • 2017
  • The introduction of smart grid, which is an innovative application of digital processing and communications to the power grid, might lead to more and more cyber threats originated from IT systems. In other words, The Energy Management System (EMS) and other communication networks interact with the power system on a real time basis, so it is important to understand the interaction between two layers to protect the power system from potential cyber threats. This paper aims to identify and clarify the cyber security risks and their interaction with the power system in Smart Grid. In this study, the optimal power flow (OPF) and Power Flow Tracing are used to assess the interaction between the EMS and the power system. Through OPF and Power Flow Tracing based analysis, the physical and economic impacts from potential cyber threats are assessed, and thereby the quantitative risks are measured in a monetary unit.

Design Of Air-Distribution System in a Duct (취출구를 가진 덕트의 공기분배장치 설계)

  • Kang, Hyung-Seon;Cho, Byung-Ki;Koh, Young-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.954-960
    • /
    • 2007
  • The purpose of this paper is to obtain design method of air-distribution system. Air-distribution system is composed of blower, duct, diffusers and measuring equipment. The air-flow rate from each diffuser is not equal. The air-flow rate is calculated with the combined equations which are Bernoulli's equation, continuity equation and minor loss equations. Inlet condition and outlet condition are adapted in each duct system. Then square difference between function of maximum air-flow rate and minimum air-flow rate is used as an object function. Area of diffuser and velocity are established as constraints. To minimize the object function, the optimization method is used. After optimization the design variables are selected under satisfaction of constraints. The air-distribution system is calculated again with the result of optimized design variable. It is shown that the air-distribution system has the equal air-flow rate from diffusers.