• Title/Summary/Keyword: Flow Rate Measurement

Search Result 910, Processing Time 0.036 seconds

Characteristics of Nonpoint Source Pollutant Loads from Forest watershed with Various Water Quality Sampling Frequencies (수질샘플빈도에 따른 산림유역의 비점원오염부하특성)

  • Shin, Min-Hwan;Shi, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • A monsoon season monitoring data from June to September, 2005 of a small forested watershed located at the upstream of the North Han River system in Korea was conducted to analyze the flow variations, the NPS pollutant concentrations, and the pollution load characteristics with respect to sampling frequencies. During the 4-month period, 1,423 mm or 79.2% of annual rainfall(1,797 mm) were occurred and more than 77%, 54% and 68% of annual T-N, $NO_3$-N and T-P loads discharged. Flow rate was continuously measured with automatic velocity and water level meters and 58 water quality samples were taken and analyzed. It was analyzed that the flow volume by random measurement varied very widely and ranged from 79% to 218% of that of continuous measurement. It was recommended that flow measurement of small forested watersheds should be continuously measured with automated flow meters to precisely measure flow rates. Flow-weighted mean concentrations of T-N, $NO_3$-N and T-P during the period were 2.114 mg/L, 0.836 mg/L, and 0.136 mg/L, respectively. T-N, $NO_3$-N and T-P loads were sensitive to the number of samples. And it was analyzed that in order to measure the pollution load within the error of 10% to the true load, the rate of sampling frequency should be higher than 89.7% of the sample numbers that were required to compute the true pollution load. If it is compared to selected foreign research results, about 10 water samples for each rainfall event were needed to compute the pollution load within 10% error. It is unlikely in Korea and recommended that thorough NPS pollution monitoring studies are required to develop the standard monitoring procedures for reliable NPS pollution quantification.

Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes (금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활)

  • Kim, Dong Geun;Jang, Changhwan;Kim, Seong Jae;Kim, Daegyoum;Kim, Sanha
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

Effects of the Impeller Inlet Tip Clearance on the Flow and Performance of Airfoil Fans (임펠러 흡입구 간극이 원심형 에어포일 송풍기의 성능에 미치는 영향)

  • Kang, Shin-Hyoung;Kim, Young-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.957-968
    • /
    • 1999
  • Performance tests of an airfoil fan and measurement of flow fields at the impeller exit are carried out to investigate the effects of the tip clearance between the rotor and inlet casing on the impeller performance. The impeller is twelve bladed of NACA 65-810 airfoils and tested with 3 different size of gap; 1, 2, 4mm. The relative decrease of pressure rising performance of the fan is 15 percent for the design flow rate when the gap size is 1 percent of the impeller diameter. The reduction of performance becomes large as the flow rate increases. The leakage flow through the clearance affects the through flow of the impeller, which results in decrease of the slip factor as well as the impeller efficiency. The data base obtained in the present study can be used for the design and flow analysis of the airfoil fans.

Respiratory air Flow Transducer Based on air Turbulence (와류 현상을 이용하는 호흡기류센서)

  • Kim, Kyung-Ah;Lee, In-Kwang;Park, Jun-Oh;Lee, Su-Ok;Shin, Eun-Young;Kim, Yoon-Kee;Kim, Kyung-Chun;Cha, Eun-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.393-400
    • /
    • 2009
  • The present study developed a new technique with no physical object on the flow stream but enabling the air flow measurement and easily incorporated with the devices for cardiopulmonary resuscitation(CPR) procedure. A turbulence chamber was formed in the middle of the respiratory tube by locally enlarging the cross-sectional area where the flow related turbulence was generated inducing energy loss which was in turn converted into pressure difference. The turbulence chamber was simply an empty enlarged air space, thus no physical object existed on the flow stream, but still the flow rate could be evaluated. Computer simulation demonstrated stable turbulence formation big enough to measure. Experiment was followed on the proto-type transducer, the results of which were within ${\pm}5%$ error compared to the simulation data. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999(P<0.0001) and the mean relative error<1%. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

Evaluation of Energy Consumption through Field Measurement at the Apartment Housing Unit Using Dynamic Flow Rate Balancing (실물실험을 통한 다이나믹 유량밸런싱 적용 공동주택 세대의 에너지소비량 평가)

  • Ryu, Seong-Ryong;Cheong, Chang-Heon;Cho, Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • Even though the control device of the heating system works well, insufficient water flow rates can degrade control performance and thermal comfort. The water flow rate should be adjusted appropriately to cope with the heating load of each zone. In order to solve these problems, a new balancing concept 'dynamic balancing' was proposed where a balancing valve opening can be automatically modulated according to the heating condition of the room. This study analyzed the effects of dynamic balancing upon indoor thermal environment and energy consumption in a radiant floor heating system through field measurement. Under part-load conditions, the use of a dynamic balancing is a more effective method to reduce energy consumption and to prevent a cavitation. Dynamic balancing is able to help boost the temperature of a room in the start-up period.

A Study on the Automatic Measurement of Swirl Generated fi:om Intake Port of Engine Cylinder Head Using an I-IEEE-1394 Camera and Step Motors (IEEE-1394카메라와 스텝모터를 이용한 엔진 실린더헤드의 흡기포트 스월 측정 자동화에 관한 연구)

  • Lee Choong-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.88-94
    • /
    • 2005
  • A swirl ratio of a charge in the cylinder could be calculated by measuring both the rotary speed of paddle and the intake air flow rate in the swirl measurement apparatus fur several positions of valve lift. The automation of the swirl ratio measurement for a cylinder head is achieved by controlling both the valve lift of cylinder head and a suction pressure of the surge tank, instead of controlling them manually. PID control of the surge tank pressure and positioning a valve lift of the cylinder head are also achieved by using two step motors, respectively. Rotating speed of a paddle are measured using an optical sensor and a counter. Flow rate are measured from ISA 1932 flow nozzle by reading a differential pressure gauge position using IEEE-1394 camera. Time to measure the swirl ratio for a port in the cylinder head is drastically reduced from an hour to 3 minutes by automation control of the apparatus.

Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop (환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구)

  • Lee, Dong-Yeop;Kim, Yoon-Kee;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

Paper-based Electrochemical Sensor Using a Self-operated Paper Pump (자발 구동형 종이 펌프를 이용한 종이 전기화학 센서)

  • Si Hiep Hua;Chikwan Kim;Duc Cuong Nguyen;Yong Shin Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.158-164
    • /
    • 2024
  • We developed a self-operated paper pump that can maintain a nearly constant flow rate of an aqueous solution along a paper strip channel in paper-based analytical devices (PADs). The quasi-stationary flow rate was controlled by increasing the crosssectional channel area (capillary force) using a fan-shaped absorption pad coupled with a paper strip channel. The flow rate is regulated by varying the fan angle of the circular absorbing pad. Furthermore, the flow rate can be increased by furnishing a hollow cavity at the center of a conventional paper strip channel. The rate was regulated by varying the length of the hollow paper channel in the flow rate range of 5.1-26.4 mm/min. As a preliminary work, a paper-pump-coupled PAD was fabricated, and its CV detection capability was evaluated for the redox reaction of Fe(CN)6+4/+3. The combination of a paper pump with a PAD resulted in an ideal CV curve with a higher limiting current and faster response time. These results are interpreted well by the Levich equation, which suggests that the paper pump is a very useful component in paper-based sensors.