• 제목/요약/키워드: Flow Prediction

검색결과 2,415건 처리시간 0.035초

기계학습을 이용한 밴드갭 예측과 소재의 조성기반 특성인자의 효과 (Compositional Feature Selection and Its Effects on Bandgap Prediction by Machine Learning)

  • 남충희
    • 한국재료학회지
    • /
    • 제33권4호
    • /
    • pp.164-174
    • /
    • 2023
  • The bandgap characteristics of semiconductor materials are an important factor when utilizing semiconductor materials for various applications. In this study, based on data provided by AFLOW (Automatic-FLOW for Materials Discovery), the bandgap of a semiconductor material was predicted using only the material's compositional features. The compositional features were generated using the python module of 'Pymatgen' and 'Matminer'. Pearson's correlation coefficients (PCC) between the compositional features were calculated and those with a correlation coefficient value larger than 0.95 were removed in order to avoid overfitting. The bandgap prediction performance was compared using the metrics of R2 score and root-mean-squared error. By predicting the bandgap with randomforest and xgboost as representatives of the ensemble algorithm, it was found that xgboost gave better results after cross-validation and hyper-parameter tuning. To investigate the effect of compositional feature selection on the bandgap prediction of the machine learning model, the prediction performance was studied according to the number of features based on feature importance methods. It was found that there were no significant changes in prediction performance beyond the appropriate feature. Furthermore, artificial neural networks were employed to compare the prediction performance by adjusting the number of features guided by the PCC values, resulting in the best R2 score of 0.811. By comparing and analyzing the bandgap distribution and prediction performance according to the material group containing specific elements (F, N, Yb, Eu, Zn, B, Si, Ge, Fe Al), various information for material design was obtained.

Hybrid medium model for conjugate heat transfer modeling in the core of sodium-cooled fast reactor

  • Wang, X.A.;Zhang, Dalin;Wang, Mingjun;Song, Ping;Wang, Shibao;Liang, Yu;Zhang, Yapei;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.708-720
    • /
    • 2020
  • Core-wide temperature distribution in sodium-cooled fast reactor plays a key role in its decay heat removal process, however the prediction for temperature distribution is quite complex due to the conjugate heat transfer between the assembly flow and the inter-wrapper flow. Hybrid medium model has been proposed for conjugate heat transfer modeling in the core. The core is modeled with a Realistic modeled inter-wrapper flow and hybrid medium modeled assembly flow. To validate present model, simulations for a three-assembly model were performed with Realistic modeling, traditional porous medium model and hybrid medium model, respectively. The influences of Uniform/Non-Uniform power distribution among assemblies and the Peclet number within the assembly flow have been considered. Compared to traditional porous medium model, present model shows a better agreement with in Realistic modeling prediction of the temperature distribution and the radial heat transfer between the inter-wrapper flow and the assembly flow.

The Static and Dynamic Performance of a MEMS/MST Based Gas-Lubricated proceeding Bearing with the Slip Flow Effect

  • Kwak, H.-D.;Lee, Y.-B.;Kim, C.-H.;Lee, N.-S.;Choi, D.-H.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.103-104
    • /
    • 2002
  • The influence of the slip flow on the MEMS/MST based gas-lubricated proceeding bearing is investigated. Based on the modified Reynolds equation, the numerical analysis of the finite difference method was developed by applying the first order slip flow approximation. The numerical prediction of bearing performance provides the significant results concerning the slip flow effect in micro scale gas-lubricated proceeding bearing. The result indicates that the load-carrying capacity as well as the rotordynamic coefficients were significantly reduced due to the slip flow. Through this work, it is concluded that the slip flow effect could not be ignored in the micro gas-lubricated proceeding bearing.

  • PDF

Hyperbolicity Breaking Model and Drift-Flux Model for the Prediction of Flow Regime Transition after Inverted Annular Flow

  • Jeong, Hae-Yong;No, Hee-Cheon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.456-461
    • /
    • 1995
  • The concept of hyperbolicity breaking is applied to predict the flow regime transition from inverted annular flow (IAF) to agitated inverted annular flow (AIAF). The resultant correlation has the similar form to Takenaka's empirical one. To validate the proposed model, it is applied to predict Takenaka's experimental results using R-113 refrigerant with four different tube diameters of 3, 5, 7 and 10 mm. The proposed model gives accurate predictions for the tube diameters of 7 and 10 min. As the tube diameter decreases, the differences between the predictions and the experimental results increase slightly. The flow regime transition from AIAF to dispersed flow (DF) is described by the drift flux model.

  • PDF

의료기관 현금흐름과 외부자금조달 간의 관계 (The Relationship of Cash Flow and External Funding in Hospital)

  • 정용모;이용철;임정도
    • 보건의료산업학회지
    • /
    • 제4권1호
    • /
    • pp.87-97
    • /
    • 2010
  • The study analyzed the cash flow and external funding in focusing on the relationship of the two factors in Korean hospitals and some changes in the relationship. The results analyzing this study were summarized as follows: First, the discriminant function of new external funds was generally the ratio of cash flow from operating activities to sales, the ratio of cash flow from investment activities to sales, the ratio of cash flow from financing activities to sales in order. The prediction rate of total discriminant function was more than 92%. Second, in case of Korean hospitals, it was known that the ratio of cash flow from operating activities to sales, particularly the net income to sales was the biggest influencing factor on the decision to external funding.

축류형 유체 기계에서 팁 누설 유동 해석을 위한 난류 모델 성능 비교 (Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-flow Turbomachinery)

  • 이공희;백제현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2162-2167
    • /
    • 2003
  • It is well-known that high anisotropic characteristic of turbulent flow field is dominant inside tip leakage vortex. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence model based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from steady-state Reynolds averaged Navier-Stokes simulations based on the RNG ${\kappa}-{\varepsilon}$ and the Reynolds stress model in two test cases, such as a linear compressor cascade and a forward-swept axial-flow fan, are compared with experimental data. Through the comparative study of turbulence models, it is clearly shown that the Reynolds stress model, which can express the production term and body-force term induced by system rotation without any modeling, should be used to predict the complex tip leakage flow, including the locus of tip leakage vortex center, quantitatively.

  • PDF

헬리컬 증기발생기 코일에서 강제대류 비등 열전달 및 유동의 수치 적 예측 (Numerical Prediction of Forced Convective Boiling Heat Transfer and Flow in Steam Generator Helical Coils)

  • 조종철;김효정;김웅식;유선오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.127-130
    • /
    • 2004
  • In this study, three-dimensional numerical calculations are peformed to simulate the flow and heat transfer in helically coiled tube steam generator employing a commercial CFD (Computational Fluid Dynamics) code. The problem considered herein includes the boiling phase change flow of tube side fluid and the single-phase counter-current flow of shell side hot fluid transferring heat to the tube side flow thru the tube wall. Detailed investigations are performed for both shell-side and tube-side flow fields in terms of density and volume fractions of each phase of fluids as well as for the tube wall heat transfer field in terms of heat transfer coefficients.

  • PDF

LPG 엔진용 고압 핀틀노즐 내부유동 수치해석 (Prediction of the internal flow in a pintle nozzle for LPG engine)

  • 정홍철;김병철
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.1077-1085
    • /
    • 1997
  • The use of "clean fuels" such as butane, propane, and mixtures of these (LPG) is an attractive way to reduce exhaust emissions. In this study internal flow of the pintle type injector for LPG engine is studied. The breakup of liquid jet is the result of competing, unstable hydrodynamic forces acting on the liquid jet as it exits the nozzle. The nozzle geometry and up-stream injection conditions affect the characteristics of flow inside the nozzle, such as turbulence and cavitation bubbles. A set of calculations of the internal flow in a pintle type nozzle were performed using a two dimensional flow simulation under different nozzle geometry and upstream flow conditions. The calculation showed that the turbulent intensity and discharge coefficient are related to needle leading angle(.alpha.) and needle lift.edle lift.

Y-JET 2-유체 분무노즐 내부유동의 모델링 (Modeling of Nozzle Flow Inside a Y-JET Twin-Fluid Atomizer)

  • 인왕기;이상용;송시홍
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1841-1850
    • /
    • 1993
  • A simplified one-dimensional analysis has been performed to predict the local pressure distributions in Y-Jet twin-fluid atomizers. Fluid compressibility was considered both in the gas(air) and two-phase(mixing) ports. The annular-mist flow model was adopted to analyze the flow in the mixing port. A series of experiments also has been performed; the results show that the air flow rate increases and the liquid flow rate decreases with the increase of the air injection pressure and/or with the decrease of the liquid injection pressure. From the measured injection pressures and flow rates, the appropriate constants for the correlations of the pressure loss coefficients and the rate of drop entrainment were decided. The local pressures inside the nozzle by prediction reasonably agree with those by the experiments.

Computational Analysis of the Three-Dimensional Flow Fields of Sirocco Fan

  • Hah, Jae-Hong;Moon, Young-J.;Park, Jin-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권2호
    • /
    • pp.44-50
    • /
    • 2001
  • The Sirocco fan performance and its three-dimensional flow characteristics are numerically prediction by STAR-CD. Turbulent flow computations are performed using approximately 500,000 mesh points, and the performance results of tow computational methods, transient and quasi-static flow analyses are compared with experimental data. In the present study, our attention is focused on the three-dimensional flow characteristics of the Sirocco fan blades and the secondary flow structure in the scroll. For a design optimization study, the scroll shape is titled by $10^\circ$ to modify the secondary flow structure, which yields some improvement of the fan performance.

  • PDF