• Title/Summary/Keyword: Flow Prediction

Search Result 2,408, Processing Time 0.03 seconds

Numerical Analysis for the Internal Flow of Thermal Vapor Compressor with real gas equation of state (실제기체 상태방정식을 적용한 열압축기 내부유동에 대한 수치해석)

  • Kang, Wee-Kwan;Choi, Du-Yeol;Shin, Jee-Young;Kim, Moo-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.216-223
    • /
    • 2011
  • TVC is a kind of ejector which entrains low pressure working fluid by using the high pressure working fluid. While most papers relating with ejectors treat the working fluid as an ideal gas for convenience, the fluid doesn't behave as the ideal gas when phase change occurs. In this study, numerical analysis is conducted by applying Redlich-Kwong equation of state instead of ideal gas equation of state. Two turbulent models are compared for the better prediction and SST k-${\omega}$ model is preferred rather than realizable k-${\epsilon}$ model by comparison. Energy loss at the diffuser inlet and throat using the real gas equation of state is relatively greater than that using ideal gas law. For the real gas case, pressure increase due to shock train at the diffuser outlet is relatively smaller than the ideal gas case, but both cases have the same pressure increase due to a pseudo shock.

3-D Numerical Study on a Oblique Jet Impingement for Fluid flows and Heat Transfer Characteristics Using ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ Model (${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ 모델을 이용한 경사진 충돌제트의 유동장 및 열전달 특성에 대한 3차원 수치해석적 연구)

  • Choi, Bong-Jun;Lee, Jung-Hee;Choi, Young-Ki
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.789-794
    • /
    • 2000
  • The Paper studies the flow and heat transfer characteristics to a jet impinging at different oblique angles, to a plane surface by numerical methods. The flowfield and heat transfer rate associated with the oblique Impingement of an axisymmetric jet are of interest as a result of its presence in numerous technological Problems. For the computation of heat transfer rate, the standard ${\kappa}-{\varepsilon}$ and ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ turbulent model were adapted. The accuracy of the numerical calculations was compared with various experimental data reported in the literature. ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ model showed better agreement with experimental data than standard ${\kappa}-{\varepsilon}$ model in prediction of the turbulent intensity and the heat transfer rate. In the case of computation of flowfield, the study carries on the ${\alpha}=45$ deg, h/D=4.95. The jet Reynolds number based on the nozzle diameter(D), was 48,000. For the computation of heat transfer rate, the Re=20,000, the jet orifice-to-plate spacings(L/D) are 4, 6 and 10, and the angle between the axis of the jet orifice and the plate surface is set at 30, 45, 60, or 90 deg. For the smaller spacings, the near-peak Nusselt numbers are not significantly effected by the initial decreases in the Jet angle. The overall shape of the local Nusselt number x-axis profile is influenced by both the jet orifice-to-plate spacing and the jet angle.

  • PDF

Estimation of Trigger Rainfall for Threshold Runoff in Mountain River Watershed (산지하천 유역의 한계유출량 분석을 위한 기준우량 산정)

  • Kim, Dong Phil;Kim, Joo Hun;Lee, Dong Ryul
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.571-580
    • /
    • 2012
  • This study is on the purpose of leading Geomorphoclimatic Instantaneous Unit Hydrograph(GcIUH) by using GIS Techniques, and estimating trigger rainfall for predicting flash flood in Seolmacheon catchment, mountain river watershed. This study leads GcIUH by using GIS techniques, calculates NRCS-CN values for effective rainfall rate, and analyzes 2011 main rainfall events using estimated GcIUH. According to the results, the case of Memorial bridge does not exceed the amount of threshold runoff, however, the case of Sabang bridge shows that simulated peak flow, approximately $149.4m^3/s$, exceeds the threshold runoff. To estimate trigger rainfall, this study determines the depth of 50 year-frequency designed flood amount as a threshold water depth, and estimates trigger rainfall of flash flood in consideration of duration. Hereafter, this study will analyze various flood events, estimate the appropriateness of trigger rainfall as well as threshold runoff through this analysis, and develop prototype of Flash Flood Prediction System which is considered the characteristics of mountain river watershed on the basis of this estimation.

An Analysis for the Characteristics of Digital TVs in CES in the View of Technology Growth and Substitution Curves (기술 성장 및 대체 곡선 관점에서의 CES 출품 Digital TV의 특성 분석)

  • Kim, Do-Goan;Shin, Seong-Yoon;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.96-98
    • /
    • 2013
  • Through reviewing the characteristics of digital TVs, which have emerged in CES since 2005, in the view of technology growth and substitution curves, this paper is to provide a prediction on the next generation's multi-media on smart environment. As a result, digital TV has been developed on the flow of its technology growth curve from the early version in 2005 to smart digital TV in 2013, which emphasizes the key word "connected", and it has already come to the market puberty. Also, as it has the characteristics such as supporting multi functional and multi media environments and introducing curved or flexible display, the digital TV in CES 2013 has reached in introductory stage on the technology substitution curve.

  • PDF

Surface Roughness Impact on Francis Turbine Performances and Prediction of Efficiency Step Up

  • Maruzewski, Pierre;Hasmatuchi, Vlad;Mombelli, Henri-Pascal;Burggraeve, Danny;Iosfin, Jacob;Finnegan, Peter;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.353-362
    • /
    • 2009
  • In the process of turbine modernizations, the investigation of the influences of water passage roughness on radial flow machine performance is crucial and validates the efficiency step up between reduced scale model and prototype. This study presents the specific losses per component of a Francis turbine, which are estimated by CFD simulation. Simulations are performed for different water passage surface roughness heights, which represents the equivalent sand grain roughness height. As a result, the boundary layer logarithmic velocity profile still exists for rough walls, but moves closer to the wall. Consequently, the wall friction depends not only on roughness height but also on its shape and distribution. The specific losses are determined by CFD numerical simulations for each component of the prototype, taking into account its own specific sand grain roughness height. The model efficiency step up between reduced scale model and prototype value is finally computed by the assessment of specific losses on prototype and by evaluating specific losses for a reduced scale model with smooth walls. Furthermore, surveys of rough walls of each component were performed during the geometry recovery on the prototype and comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements. This study underlines that if rough walls are considered, the CFD approach estimates well the local friction loss coefficient. It is clear that by considering sand grain roughness heights in CFD simulations, its forms a significant part of the global performance estimation. The availability of the efficiency field measurements provides an unique opportunity to assess the CFD method in view of a systematic approach for turbine modernization step up evaluation. Moreover, this paper states that CFD is a very promising tool for future evaluation of turbine performance transposition from the scale model to the prototype.

An Experimental and Modeling Study on the Oxidation Kinetics of Nitric Oxide over Platinum-based Catalysts (백금계 촉매상에서 산화질소(NO)의 산화반응속도에 관한 실험 및 모델링 연구)

  • Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.71-80
    • /
    • 2012
  • To improve the $NO_X$ conversion over a SCR (selective catalytic reduction) catalyst, the DOC (diesel oxidation catalyst) is usually placed upstream of the SCR catalyst to enhance the fast SCR reaction ($4NH_3+2NO+2NO_2{\rightarrow}4N_2+6H_2O$) using equimolar amounts of NO and $NO_2$. Here, a ratio of $NO_2/NO_X$ above 50% should be avoided, because the reaction with $NO_2$ only ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$) is slower than the standard SCR reaction ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$). In order to accurately predict the performance characteristics of SCR catalysts, it is therefore desired to develop a more simple and reliable mathematical and kinetic models on the oxidation kinetics of nitric oxide over a DOC. In the present work, the prediction accuracy and limit of three different chemical reaction kinetics models are presented to describe the chemicophysical characteristics and conversion performance of DOCs. Steady-state experiments with DOCs mounted on a light-duty four-cylinder 2.0-L turbocharged diesel engine then are performed, using an engine-dynamometer system to calibrate the kinetic parameters such as activation energies and preexponential factors of heterogeneous reactions. The reaction kinetics for NO oxidation over Pt-based catalysts is determined in conjunction with a transient one-dimensional (1D) heterogeneous plug flow reactor (PFR) model with diesel exhaust gas temperatures in the range of 115~$525^{\circ}C$ and space velocities in the range of $(0.4{\sim}6.5){\times}10^5\;h^{-1}$.

Prediction of Gas Turbine Engine Steady Performance from Transient Performance Test (가스터빈엔진 천이 성능 시험에 의한 정상상태 성능 예측)

  • Yang, In-Young;Jun, Yong-Min;Kim, Chun-Taek;Nam, Sam-Sik;Yang, Soo-Seok;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.62-70
    • /
    • 2002
  • Methodology of predicting steady performance of gas turbine engine from transient test data was explored to develop an economic performance test technique. Discrepancy of transient performance from steady performance was categorized as dynamic, thermal and aerodynamic transient effects. Each effect was mathematically modeled and quantified to provide correction factors for calculating steady performance. Engine performance tests were conducted at Altitude Engine Test Facility of KARI. The influence of engine inlet/outlet condition change on engine performance was corrected firstly, and then steady performance was predicted from the correction factors. The result was compared with steady performance test data. This correction method showed an acceptable level of precision, 3.68% difference of fuel flow.

Eulerian-based Numerical Modeling for Impingement Prediction of Supercooled Large Droplets (과냉각대형액적 충돌예측을 위한 오일러리안 기반 수치 모델링)

  • Jung, Sung-Ki;Kim, Ji-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.647-654
    • /
    • 2012
  • Supercooled large droplet issues in aircraft icing have been continually reported due to the important safety considerations. In order to simulate the impingement behavior of large droplets, a two-dimensional and compressible Navier-Stokes code was developed to determine the flow field around the test model. Also, the Eulerian-based droplet impingement model including a semi-empirical approach for the droplet-wall interaction process and droplet break-up was developed. In particular, the droplet-wall interactions were considered as numerical boundary conditions for the droplet impingement simulation in the supercooled large droplet conditions. Finally, the present results were compared with the experimental test data and the LEWICE results. The droplet impingement area and maximum collection efficiency values between present results and wind tunnel data were in good agreements. Otherwise, the inclination of collection efficiency of the present result is over-predicted than the wind tunnel data around a lower surface of the NACA 23012 airfoil.

Influences of Air Trajectories on the Variations of Carbon Monoxide in Major Cities in Korea for the Year of 1999 (1999년 기류의 이동궤적에 따른 우리나라 주요 도시의 일산화탄소 농도 변화)

  • 김영성;김영주;김진영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.6
    • /
    • pp.451-461
    • /
    • 2001
  • Backward trajectories were calculated from five urban areas in Korea in 1999 in order to assess the effects of long-range transport on the air quality variations on an annual basis. The five areas selected were Seoul, Mokpo, Cheju, Pohang, and Kangnung, which are evenly distributed along the shoreline in Korea. Meteorological fields used in the work were prepared by the Korea Meteorological Administration using the RDAPS(Regional Data Assimilation and Prediction System) with grid spacing of 40 km and 12-h intervals(0000 and 1200 UTC). Upwind regions around the Korean Peninsula were divided into five sectors including the region to the northeast(I), northern China (II), southern China(III), the northwestern Pacific(IV), and Japan(V). The influence of air flow from these sectors on the variations of carbon monoxide concentrations in the selected areas was investigated. The results showed that the influences of Sectors II and III were persistent although some influences of adjacent sectors were observed according to the location of the areas. In general, the concentration of carbon monoxide tended to go up under the influence of Sectors II and III but tended to go down under the influence of Sector I. However, the influences of other sectors were rather mixed. The importance of the long-range transport was examined when the whole country was uniformly influenced by Sectors II and III with strong synoptic winds. The effects of long-range transport were large in Mokpo and Cheju, close to Sectors II and III, where the local emissions were considered small. The effects of local emissions were significant in Pohang and Seoul; such effect was more distinct in Pohang located farther from Sectors II and III.

  • PDF

A Study on Noise Reduction of Rotary Compressor (공조용 로터리 압축기의 소음 저감에 관한 연구)

  • Ahn, B.H.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.60-69
    • /
    • 1999
  • The noise and vibration sources of rotary compressor for room air-conditioner are pressure pulsation of compression process, cavity resonance of inner space, structural radiation noise of shell and impact noise of discharge valve. Among them, pressure pulsation is very important noise and vibration source. Because it transferred various kinds of noise and vibration like as mentioned above. In this reason, muffler and resonator are used in order to absorb and remove these noises. But an analytical prediction using acoustic analysis does not coincident with the experimental result. The difference between analysis and actual state is due to the assumption of analysis. This paper covered with new concept of muffler design based on the turbulence kinetic energy of flow by using CFD. From this analysis, it is possible to decide the best position of discharge port of muffler. Therefore $2{\sim}3dB$ noise reduction effect is acquired in rotary compressor of 5000 BTU grade. Also new approach of resonator design is suggested. From this study, the characteristics of resonator and surge hole (a kind of resonator without pipe length) are identified. The former is useful for pure tone noise (narrow frequency band), and the latter is effective for broad frequency band. This paper shows that it is very available to use 3 dimensional analysis of resonator in order to predict more exact tuning frequency. The result is proved by a lot of experiments. From combination of fluid analysis and acoustic analysis, up stream position is effective location of resonator concerning turbulence motion of fluid.

  • PDF