• Title/Summary/Keyword: Flow Prediction

Search Result 2,401, Processing Time 0.032 seconds

Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning

  • Kim, Huiyung;Moon, Jeongmin;Hong, Dongjin;Cha, Euiyoung;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1796-1809
    • /
    • 2021
  • The subchannel of a research reactor used to generate high power density is designed to be narrow and rectangular and comprises plate-type fuels operating under downward flow conditions. Critical heat flux (CHF) is a crucial parameter for estimating the safety of a nuclear fuel; hence, this parameter should be accurately predicted. Here, machine learning is applied for the prediction of CHF in a narrow rectangular channel. Although machine learning can effectively analyze large amounts of complex data, its application to CHF, particularly for narrow rectangular channels, remains challenging because of the limited flow conditions available in existing experimental databases. To resolve this problem, we used four CHF correlations to generate pseudo-data for training an artificial neural network. We also propose a network architecture that includes pre-training and prediction stages to predict and analyze the CHF. The trained neural network predicted the CHF with an average error of 3.65% and a root-mean-square error of 17.17% for the test pseudo-data; the respective errors of 0.9% and 26.4% for the experimental data were not considered during training. Finally, machine learning was applied to quantitatively investigate the parametric effect on the CHF in narrow rectangular channels under downward flow conditions.

Prediction of scour around single vertical piers with different cross-section shapes

  • Bordbar, Amir;Sharifi, Soroosh;Hemida, Hassan
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.43-58
    • /
    • 2021
  • In the present work, a 3D numerical model is proposed to study local scouring around single vertical piers with different cross-section shapes under steady-current flow. The model solves the flow field and sediment transport processes using a coupled approach. The flow field is obtained by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations in combination with the k-ω SST turbulence closure model and the sediment transport is considered using both bedload and suspended load models. The proposed model is validated against the empirical measurements of local scour around single vertical piers with circular, square, and diamond cross-section shapes obtained from the literature. The measurement of scour depth in equilibrium condition for the simulations reveal the differences of 4.6%, 6.7% and 13.1% from the experimental measurements for the circular, square, and diamond pier cases, respectively. The model displayed a remarkable performance in the prediction of scour around circular and square piers where horseshoe vortices (HSVs) have a leading impact on scour progression. On the other hand, the maximum deviation was found in the case of the diamond pier where HSVs are weak and have minimum impact on the formation of local scour. Overall, the results confirm that the prediction capability of the present model is almost independent of the strength of the formed HSVs and pier cross-section shapes.

스러스트 래버린스 실을 배면에 갖는 원심형 임펠러의 축력 해석 (Analysis of the Axial Thrust Force of a Centrifugal Impeller with a Thrust Labyrinth Seal at its Backside)

  • 박준혁;김태호
    • Tribology and Lubricants
    • /
    • 제37권1호
    • /
    • pp.31-40
    • /
    • 2021
  • This study describes the effects of a thrust labyrinth seal applied to the backside of a centrifugal impeller on the axial thrust force for high speed turbomachinery. The bulk flow model using Neumann's equation calculates the seal cavity pressures and leakage flow rate of the thrust labyrinth seal based on three configurations: teeth-on-rotor (TOR), teeth-on-stator (TOS), and interlocking labyrinth seal (ILS). Prediction results show that the ILS is superior to the TOR and TOS in terms of leakage flow rate. A mathematical model of a centrifugal impeller with a thrust labyrinth seal on its backside calculates the force components corresponding to the impeller inlet, shroud, impeller backside outer, backside seal, and backside inner pressures. A summation of the force components renders the total axial thrust force acting on the centrifugal impeller. The Newton-Raphson numerical scheme iteratively calculates the pressures and leakage flow rate through the impeller wall gap. The prediction results reveal that the leakage flow rate and total axial thrust force increase with rotor speed, and the ILS significantly decreases the leakage flow rate, whereas it slightly increases the axial thrust force when compared to TOR and TOS. Increasing the seal clearance causes an increase in the leakage flow rate and a slight decrease in the axial thrust force with the ILS.

검사체적 방법을 이용한 평직의 투과율 계수 예측 (Permeability prediction of plain woven fabric by using control volume finite element method)

  • Y. S. Song;J. R. Youn
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.181-183
    • /
    • 2002
  • The accurate permeability for preform is critical to model and design the impregnation of fluid resin in the composite manufacturing process. In this study, the in-plane and transverse permeability for a woven fabric are predicted numerically through the coupled flow model which combines microscopic with macroscopic flow. The microscopic and macroscopic flow which are flows within the micro-unit and macro-unit cell, respectively, are calculated by using 3-D CVFEM(control volume finite element method). To avoid checker-board pressure field and improve the efficiency on numerical computation, A new interpolation function for velocity is proposed on the basis of analytic solutions. The permeability of plain woven fabric is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Based on the good agreement of the results, the relationships between the permeability and the structures of preform such as the fiber volume fraction and stacking effect can be understood. The reverse and the simple stacking are taken in account. Unlike past literatures, this study is based on more realistic unit cell and the improved prediction of permeability can be achieved. It is observed that in-plane flow is more dominant than transverse flow in the real flow through preform and the stacking effect of multi-layered preform is negligible. Consequently, the proposed coupled flow model can be applied to modeling of real composite materials processing.

  • PDF

설악산 국립공원 지역 토석류 발생가능성 평가 기법의 개발 (Development of a Prediction Technique for Debris Flow Susceptibility in the Seoraksan National Park, Korea)

  • 이성재;김길원;정원옥;강원석;이은재
    • 한국산림과학회지
    • /
    • 제110권1호
    • /
    • pp.64-71
    • /
    • 2021
  • 최근의 기후변화는 산지토사재해의 발생을 가속시키고 있다. 산지토사재해 중 토석류는 전파길이가 길고 매우 빠른 거동 특성을 갖기 때문에 매우 위협적으로 인식된다. 본 연구는 설악산 국립공원내 토석류 발생지 263개소를 대상으로 발생 길이(m)에 미치는 영향인자를 구명하고, 수량화이론(I)을 사용하여 발생 길이에 대한 각 산림환경 인자의 기여도 분석을 하여 예방적인 측면에서 국립공원내 토석류 발생 가능성지역에 대한 예측기법을 개발하였다. 각 산림환경 인자의 Range를 추정한 결과, 종단사면(0.9676)이 가장 높게 나타나 설악산 국립공원의 토석류 발생 가능성에 큰 영향을 미치는 것으로 추정되었으며, 다음으로는 횡단사면(0.6876), 고도(0.2356), 사면경사(0.1590), 방위(0.1364) 순으로 나타났다. 설악산 국립공원 산악지 토석류 발생 발생가능성 판정표를 기준으로 5개의 산림환경 인자의 category별 점수를 계산한 추정치 범위는 0점에서 2.1864점 사이에 분포하고 있으며, 중앙값은 1.0932점으로 토석류 발생가능성을 예측을 작성한 결과 I등급은 1.6399 이상, II등급 1.0932~1.6398, III등급 0.5466~1.0931, IV등급 0.5465 이하로 나타나 1등급, 2등급에서 토석류 발생 비율이 86.3%로서 높은 적중률을 보였다.

판토그라프 주변의 유동 및 소음 특성에 관한 연구 (A Study on Aerodynamic and Aeroacoustic Characteristics around Pantograph)

  • 유승원;민옥기;박춘수;정흥채
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.529-536
    • /
    • 2000
  • This paper describes the analysis of aerodynamics and the prediction of airflow induced noise around simplified pantograph. First, computational fluid dynamics (CFD) is conducted far several model to evaluate linear/nonlinear flow field characteristics due to high speed flow and the CFD results support the computational aeroacoustics. The accurate prediction of the aeroacoustic analysis is necessary for designers to control and reduce the airflow induced noise. We adopt the acoustic analogy based on Ffowcs Williams- Hawkings (FW-H) equation and predict aeroacoustic noise.

  • PDF

Rainfall Estimation for Hydrologic Applications

  • Bae, Deg-Hyo;Georgakakos, K.P.;Rajagopal, R.
    • Korean Journal of Hydrosciences
    • /
    • 제7권
    • /
    • pp.125-137
    • /
    • 1996
  • The subject of the paper is the selection of the number and location of raingauge stations among existing ones for the computation of mean areal precipitation and for use as input of real-time flow prediction models. The weighted average method developed by National Weather Service was used to compute MAP over the Boone River basin in Iowa with a 40 year daily data set. Two different searching methods were used to find local optimal solutions. An operational rainfall-runoff model was used to determine the optimal location and number of stations for flow prediction.

  • PDF

직접 수치 모사를 통한 캐비테이션 소음 예측 및 모델링 (Cavitation Noise Prediction: Direct numerical simulation and Modeling)

  • 서정희;문영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2929-2934
    • /
    • 2007
  • Prediction methods for cavitation noise are presented. At first, direct numerical simulation of cavitating flow noise has been performed, and acoustic analogy equation based on the cavitation noise modeling is derived. For the direct numerical simulation, a density based homogenous equilibrium model is employed to simulate cavitating two-phase flow and the governing equations are solved with high-order numerical schemes to resolve cavitation noise. The compressible Navier-Stokes equations for mixture fluids are discretized with a sixth-order central compact scheme, and the steep gradient of flow variables and supersonic regions are treated with the selective spatial filtering technique. The direct simulation of cavitating flow noise is performed for a 2D circular cylinder at cavitation number 0.7 and 1. The far-field noise is also predicted with the derived analogy equation. Noise spectrum predicted with the equation is well compared with the result of direct numerical simulation and also agree well with the theory.

  • PDF

익형 주위의 층류와 난류가 혼합된 유동해석 (ANALYSIS OF LAMINAR AND TURBULENT MIXED FLOW AROUND AN AIRFOIL)

  • 김철완;이융교
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.87-89
    • /
    • 2009
  • In the present paper, transition turbulence model is applied to the NACA64(3)618 and detailed flow features are studied. The turbulence model is sensitive to the boundary layer grid quality and y+ of the grid was limited to 1. The prediction of the transition region is dependent on the local flow condition. The pressure coefficient distribution of the transition turbulence model is compared with that of the fully turbulent mode and the drag distribution of the transition turbulence model was compared with that of the wind tunnel test.

  • PDF

채널난류유동에 대한 하이브리드 RANS/LES 방법 (Hybrid RANS/LES Method for Turbulent Channel Flow)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1088-1094
    • /
    • 2002
  • A channel flow with a high Reynolds number but coarse grids is numerically studied to investigate the prediction possibility of its turbulence which is three-dimensional and time-dependent. In the present paper, a Reynolds-Averaged Navier-Stokes (RANS) model, a Large Eddy Simulation (LES) and a Navier-Stokes equation with no model are tested with a new approach of hybrid RANS/LES, which reduces to RANS model in the boundary layers and at separation, and to Smagorinsky-like LES downstream of separation, and then compared with each other. It is found that the simulations of hybrid RANS/LES method sustain turbulence like those of LES and with no model, and the results are stable and fairly accurate. This indicates strongly that gradual improvements could lead to a simple, stable, and accurate approach to predict turbulence phenomena of wall-bounded flow.