• Title/Summary/Keyword: Flow Passage

Search Result 594, Processing Time 0.027 seconds

Performance and Flow Characteristics of a Forward Swept Propeller Fan (전향 스윕 프로펠러 홴의 성능 및 유동특성)

  • Kim, Jin-Kwon;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.75-84
    • /
    • 2000
  • Performance and flow characteristics of a small forward swept propeller fan for home refrigerators are studied experimentally. An unusual discontinuity is observed in the performance curve of the fan. Mean flow fields measured with as-hole Pitot probe reveal that the flow is axial at the high flow rate and radial at the low flow rate. The flow structure changes abruptly across the discontinuity. Unsteady flow measurements with a set of hot-wire probes indicate that near the discontinuity a single-cell stall rotates at 40% speed of the fan speed, while away from the discontinuity the flow shows periodic variation corresponding to the blade passage frequency. Phase-lock averaged flow fields measured with a triple-sensor hot-wire probe show that there appears radially inward flow over the pressure side of the blade and the outward passage flow over the tip.

Experimental Study on the Unsteady Flow under Various Operating Conditions of a Counter Rotating Axial Flow Fan (엇회전식 축류팬의 작동조건 변화에 따른 비정상 유동에 관한 실험적 연구)

  • Kang, Hyun-Koo;Cho, Lee-Sang;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1389-1394
    • /
    • 2004
  • Experiments were done for the unsteady flow in a counter rotating axial flow fan near peak efficiency and stall point. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional passage flow patterns were investigated through the acquired data by the $45^{\circ}$ inclined hot-wire. Comparison of flow characteristics between two different operating conditions such as tip vortex, secondary flow and turbulence intensity were performed through the analyses of axial, radial and tangential velocity distributions. As a result, tip vortex and secondary flows are enforced and measured obviously at stall point.

  • PDF

Measurement of Flow and Scalar Distribution at Gas Turbine Inlet Section (가스터빈 입구에서의 유동 및 스칼라 분포 특성)

  • Hong, Sung-Kook;Ireland, Peter;Denman, Paul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.45-50
    • /
    • 2010
  • The goal of paper is to investigate the flow and scalar distribution through the HP Nozzle Guide Vane (NGV) passage. Flow and scalar distribution measurement are conducted by using 5-hole pressure probe and $CO_2$ tracing technique, respectively. Three different experimental cases are considered depending on cooling flow condition. The result shows that the vortical secondary flow patterns are observed clearly and these flow characteristics maintain through the NGV passage regardless of cooling flow injection. Compared to center region, the high axial velocity flow is observed near wall region due to cooling flow injection. Without cooling flow, the $CO_2$ (scalar) distribution becomes to be uniform quickly due to the strong flow mixing phenomenon. However, in cases of cooling flow, scalar distribution is significantly non-uniform.

Computational Analysis of the Three-Dimensional Flow Characteristics and the Performance of Sirocco Fan (시로코팬의 3차원 유동 특성 및 성능에 대한 전산해석)

  • 하재홍;문영준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.674-679
    • /
    • 2000
  • The Sirocco fan performance and its three-dimensional flow characteristics were numerically predicted by STAR-CD software. Turbulent flow computations were performed using approximately 500,000 mesh points, and the performance results of two computational methods, transient analysis and quasi-static analysis were compared with experimental data. At present, our attention was focused on localizing the three-dimensional flow characteristics of the Sirocco fin, especially the structure of the secondary flow in the scroll and the through-flow characteristics of the Sirocco fan blades. Also, for an optimization, the scroll passage was tilted with 10 degrees to change the flow characteristics and improve the performance of the Sirocco fan.

  • PDF

Numerical Optimization of the Coolant Flow Rates through Cylinder Head Gasket Holes by applying CFD Techniques (CFD 기법을 이용한 실린더헤드 가스켓홀 통과 유량의 최적화)

  • 백경욱;이상호;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.121-128
    • /
    • 2000
  • Simple design methods were developed to control the coolant flow rates through cylinder head gasket holes. Applying the concept of flow through an obstruction the ratio of intake to exhaust side flow rates could be easily controlled while maintaining the flow rates per cylinder of the original model. Flow distribution in the coolant passage of the original model was calculated by CFD and the flow rates at the gasket holes were modified based on the calculation results. The calculated flow rated of the modified gasket holes were reasonably close to target values. For more accurate control of the flow rate distribution, a design method with iterative CFD calculations was also suggested. The final size of gasket holes for the target flow rates were obtained just after a few optimization iterations. These methods can be very useful for the optimization of heat transfer characteristics in engine cylinder head and block.

  • PDF

Numerical Analysis of Fluid Flow in a Regenerative Cooling Passage (재생냉각 유로 내의 유동에 관한 수치해석)

  • 조원국
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2000
  • A computational analysis has been made on fluid flow in a regenerative cooling Passage for a reduced size liquid rocket engine to predict pressure drop and heat transfer rate in it. The contraction/expansion of the cross sectional area of the passage turn out to increases both the pressure loss and the heat transfer rate of the duct. The changes of the cross sectional area near the nozzle throat are effective to protect the throat which suffers from severe thermal load. Also given is the qualitative characteristics of the performance of the regenerative cooling system due to the variation of coolant flow rate.

  • PDF

Experimental Analyses of Flow in a Production Torque Converter Using LDV (LDV를 이용한 토크컨버터 내 유동의 실험적 분석)

  • Yoo, S.C.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.757-762
    • /
    • 2018
  • LDV(laser Doppler velocimetry) measurements were conducted on the exit region of the impeller passage and the gap between the impeller and turbine blades under 0.8 speed ratio. The 0.8 speed ratio has an impeller speed of 2000rpm and a turbine speed of 1600rpm. A periodic variation of the mass flow rate is present in many of the measurements made. The frequency of this variation is the same as the frequency of the turbine blades passing the impeller passage exit. It is found that the instantaneous position of the turbine had effect on fluid flow inside the impeller passage and gap region. This study would aid in the construction of higher accuracy CFD models of this complex turbomachinery device.

Effect of Nozzle Shape on the Performance and Internal Flow of a Cross-Flow Hydro Turbine (횡류수차 노즐형상이 성능과 내부유동에 미치는 영향)

  • Choi, Young-Do;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.45-51
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shape on the performance and internal flow of a cross-flow hydro turbine. CFD analysis for three kinds of nozzle shape is conducted to simulate the effect of nozzle shape. The results reveal that relatively narrow nozzle width is effective to increase the turbine efficiency and output power. Almost output power is achieved at Stage 1. Therefore, optimum design of the nozzle shape is necessary to improve the turbine performance. Recirculation flow in the runner passage decreases the turbine efficiency and output power because the flow make hydraulic loss and collision loss in the region. Air should be put into the runner passage and the recirculating flow should be suppressed by the air layer in the runner.

Numerical study on flows within an shrouded centrifugal impeller passage (원심회전차 내부유도장에 관한 수치해석적 연구)

  • Kim, Seong-Won;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3272-3281
    • /
    • 1996
  • The flow analysis method which had been developed for the numerical calculation of 3-dimensional, incompressible and turbulent flow within an axial compressor was extended to the flow field within centrifugal impeller. In this method based on the SIMPLE(Semi Implicit Method Pressure Linked Equations) algorithm, the coordinate transformation was adopted and the standard k-.epsilon. model using wall function was used for turbulent flow analysis. The calculated flow fields have agreed very well with measurement results. Especially, 3-dimensional and viscous flow characteristics including secondary flows, jet-wake flow and decreased pressure rise along impeller passage, which can't be predicted by inviscid Q3D calculation were predicted very reasonably.

Analysis of a Flow Passage Opening Device using RecurDyn (RecurDyn을 활용한 가속도추종 유로개방장치 해석)

  • Jung, Sungmin;Kim, Young Shin;Park, Jeong-Bae;Jun, Pil Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.78-83
    • /
    • 2014
  • A special part such as a flow passage opening device is required to prevent the disconnection of fuel transfer in a pressurized fuel tank. To meet this requirement, the device utilizing an acceleration follow-up technique was invented. RecurDyn, a dynamic analysis tool, is introduced in this article to predict the device's performance and to determine parameters affecting it. In the analysis, it is shown that balancing weights can open the passage in accordance with fuel position.