• Title/Summary/Keyword: Flow Mixing

Search Result 1,774, Processing Time 0.024 seconds

Numerical Study on Tribrachial Flame Propagation in a 2-D Mixing Layer (연료/산화제의 2차원 혼합층에서 삼지화염의 전파 특성에 관한 수치해석)

  • Kim, Jun-Hong;Kim, Hong-Jip;Chung, Suk-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.1
    • /
    • pp.7-13
    • /
    • 2001
  • Propagation characteristics of tribrachial flames have been studied numerically in a two-dimensional fuel/oxidizer mixing layer. A flame is initiated by imposing a high temperature ignition source. Subsequent propagation of a tribrachial flame is traced. The flow redirection effect at the leading edge of a tribrachial flame increases the propagation speed beyond the corresponding stoichiometric laminar burning velocity. The effect of mixture fraction gradient on the propagation speed of a tribrachial flame is analyzed in a mixing layer considering that mixture fraction gradient increases as a tribrachial flame propagates toward upstream. As the flame curvature at the leading edge increases with decreasing mixture fraction gradient, the flow redirection effect becomes more pronounced on the flame propagation speed. As a result, the propagation speed of a tribrachial flame increases with decreasing mixture fraction gradient.

  • PDF

Breakup Characteristics in Plain Jet Air Blast Atomizer(I)-Jet Breakup and Internal Flow- (2유체 분무노즐의 분열특성(I)-액주분열 및 내부유동-)

  • Kim, Hyeok-Ju;Lee, Chung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1009-1023
    • /
    • 1997
  • The breakup length of a liquid jet with flowrate, formed by releasing through a nozzle of circular cross-section into the atmosphere, was experimented and studied for 3 liquid nozzles of varying diameters. The experimental result was analyzed using the existing theoretical equation for predicting the breakup length. It was found that the breakup length of liquid jet depends on the velocity, and the breakup length increases with increasing of the liquid nozzle diameter. Also, the variation range of the breakup length for the same flowrate of liquid increased rapidly as velocity was increased for laminar flow, but in the turbulent flow region, it leveled off in the range of approximately 0.55-0.7 of the mean breakup length. Furthermore, when the longest smooth liquid jet was applied to the co-axial flow air blast atomizer, the effect of air flow on the flow pattern and breakup length was studied for 6 glass nozzles of different lengths and diameters. It was found that depending on the diameter of the mixing tube and liquid jet, it was possible to observe a wide range of flow patterns, such as liquid jet through flow, partial annular flow and annular flow. The liquid jet breakup length was more sensitive to the change in the length rather than the diameter of the mixing tube. As the length of the mixing tube shortens, the breakup length also shortens rapidly.

Development of an Injection Molded Disposable Chaotic Micromixer: Serpentine Laminating Micromixer (I) - Design and Numerical Analysis - (사출 성형된 일회용 카오스 마이크로 믹서의 개발: 나선형 라미네이션 마이크로 믹서 (I) - 디자인 및 수치 해석 -)

  • Kim Dong Sung;Lee Se Hwan;Kwon Tai Hun;Ahn Chong H.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1289-1297
    • /
    • 2005
  • The flow in a microchannel is usually characterized as a low Reynolds number (Re) so that good mixing is quite difficult to be achieved. In this regard, we developed a novel chaotic micromixer, named Serpentine Laminating Micromixer (SLM) in the present study, Part 1. In the SLM, the higher level of chaotic mixing can be achieved by combining two general chaotic mixing mechanisms: splitting/recombination and chaotic advection. The splitting and recombination (in other term, lamination) mechanism is obtained by the successive arrangement of 'F'-shape mixing units in two layers. The chaotic advection is induced by the overall three-dimensional serpentine path of the microchannel. Chaotic mixing performance of the SLM was fully characterized numerically. To compare the mixing performance, a T-type micromixer which has the same width, height and length of the SLM was also designed. The three-dimensional numerical mixing simulations show the superiority of the SLM over the T-type micromixer. From the cross-sectional simulation results of mixing patterns, the chaotic advection effect from the serpentine channel path design acts favorably to realize the ideal lamination of fluid flow as Re increases. Chaotic mixing mechanism, proposed in this study, could be easily integrated in Micro-Total-Analysis-System, Lab-on-a-Chip and so on.

Effect of the distance between the adjacent injectors on penetration and mixing characteristics of the jet in supersonic crossflow (수평 배치된 분사구의 배치 간격에 따른 초음속 유동장 내 분사 유동의 침투 및 혼합 특성)

  • Kim, Sei Hwan;Lee, Hyoung Jin
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.81-89
    • /
    • 2018
  • In the present study, a numerical investigation was conducted to analyze the effect of the distance between the adjacent injectors on the characteristics of flow structure, fuel penetration, and air/fuel mixing. Numerical results were validated with experimental data using a single injection. Subsequently, the same injector geometry and properties were applied on a non-reacting flow simulation with multiple injectors. Total pressure loss, penetration height, and mixing efficiency were compared with the distance between the injectors. The results showed that each injected gas merged into a single stream, resulting in the 2D-like flow fields under the condition of short distance and lower mixing efficiency along with higher total pressure loss. When the distance between the injectors increased, total pressure loss reduced and mixing efficiency increased due to the weakening of interactions between the injected gases.

Experimental Study of the Supersonic Free Jet Discharging from a Petal Nozzle (페탈노즐로부터 방출되는 초음속 자유제트에 관한 실험적 연구)

  • Lee, Jun-Hee;Kim, Jung-Bae;Gwak, Jong-Ho;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2133-2138
    • /
    • 2003
  • In general, flow entrainment of surrounding gas into a supersonic jet is caused by the pressure drop inside the jet and the shear actions between the jet and the surrounding gas. In the recent industrial applications, like supersonic ejector system or scramjet engine, the rapid mixing of two different gases is important in that it determines the whole performance of the flow system. However, the mixing performance of the conventional circular jet is very low because the shear actions are not enough. The supersonic jet discharging from a petal nozzle is known to enhance mixing effects with the surrounding gas because it produces strong longitudinal vortices due to the velocity differences from both the major and minor axes of petal nozzle. This study aims to enhance the mixing performance of the jet with surrounding gas by using the lobed petal nozzle. The jet flows from the petal nozzle are compared with those from the conventional circular nozzle. The petal nozzles employed are 4, 6, and 8 lobed shapes with a design Mach number of 1.7 each, and the circular nozzle has the same design Mach number. The pitot impact pressures are measured in detail to specify the jet flows. For flow visualization, the schlieren optical method is used. The experimental results reveal that the petal nozzle reduces the supersonic length of the supersonic jet, and leads to the improved mixing performance compared with the conventional circular jet.

  • PDF

Effects of Multi-hole Baffle Thickness on Flow and Mixing Characteristics of Micro Combustor (다공배플 두께가 마이크로 연소기의 유동 및 혼합특성에 미치는 영향)

  • Kim, Won Hyun;Park, Tae Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.623-629
    • /
    • 2017
  • Flow structure and mixing characteristics in a micro combustor with a multi-hole baffle were numerically studied using the Reynolds stress model. The multi-hole baffle has geometrical features to produce multiple three-dimensional vortices inside combustion chamber. When the thickness of the baffle's geometrical factors changes, variations of vortical structures occur variously. Among these vortices, the vortex generated from the fuel stream exerts a critical influence on the mixing enhancement. The three-dimensional vortical structure, in its development state, was strongly dependent on the baffle thickness. In particular, as the baffle thickness decreases to values less than the diameter of the fuel hole, the jet stream in baffle holes changes from the parabolic to saddleback profile type. The sizes of recirculation zones inside combustion chamber and the mixing state were closely affected by the structure of the jet streams.

Fabrication and Performance Evaluation of the HVM Micromixer using Horizontal and Vertical Multi-mixing (HVM) Flow Motion (상하좌우 복합유동 HVM 마이크로 믹서 제작 및 성능평가)

  • Yoo, Won-Sul;Kim, Seong-Jin;Kang, Seok-Hoon;Lee, Dong-Kyu;Go, Jung-Sang;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.214-221
    • /
    • 2012
  • Recently, the biochip which is a prime representation of NT, IT, BT, as an example of convergence technology, has been frequently mentioned. With the recent rapid advance in biotechnology, these compact devices, such as lab-on-a-chip or u-TAS, have been developed, and more research is needed. These compact devices typically use the micro-channel in order to shed or detach and mix a variety of materials. Specially, in micro-fluidic systems, a mixer is necessary to produce a mixture because only laminar flow occurs at a low-Reynolds number. To solve this problem, HVM a micromixer that induces a horizontal and vertical multi-mixing flow motion, is proposed. The mixing performance was analyzed and verified by optimizing the shape through the CFD analysis and evaluating the structural analysis and the soundness with material properties that are obtained through the basic experiment.

A Study on the curvature Effect of microchannel within Electroosmotic Flow (전기삼투 유동 중 마이크로 채널 내 곡률 변화에 따른 혼합특성에 대한 연구)

  • Heo, Hyeung-Seok;Suh, Yong-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.107-110
    • /
    • 2005
  • In this study a newly designed and electro-osmotic micro-mixer is proposed. This design is comprised of a channel and metal electrodes attached in the local side wall surface, To investigate the flow patterns a numerical method is employed. To obtain the flow patterns numerical computation are performed by using a commercial code, CFD-ACE. The fluid-flow solutions are then cast into studying the characteristics of stirring with aid the Mixing index. Focus is given the effect on the electro osmotic flow characteristics under the curvature variation in the microchannel with the local of the electric field

  • PDF

Flow Analysis for the Geometry Optimization of Combustion Chamber of Central Flow Type Waste Incinerator (중간류식 폐기물 소각로 연소실의 최적형상 설계를 위한 유동해석)

  • Lee, Jin-Uk;Kim, Seong-Bae;Yun, Yong-Seung;Kim, Hyeon-Jin;Heo, Il-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.252-259
    • /
    • 2001
  • Computational study has been performed to observe the flow characteristics of combustion chamber for geometrical modification in municipal solid waste incinerator. A series of geometrical modification has been carried out as an attempt to reduce the size of recirculation zone, to obtain uniform flow field in the secondary combustion chamber and to improve the mixing of combustion gas. Two dimensional non-reacting turbulent flow has been studied as the first step to get such goals and the result of design optimization is presented. In addition, three dimensional non-reacting and reacting flow analyses were performed to verify the validity of two dimensional approach.

A Study on Flow Characteristics of Confined Circular Jet within Pipe (이중원관 구속제트의 유동특성에 관한 연구)

  • Seo M. S.;Choi J. W.;Lee Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.136-142
    • /
    • 1997
  • The present study is aimed to investigate flow characteristics of confined jet flow within circular pipe. Numerical method based upon revised SOLA scheme which secures conservation form of convective terms on irregular grids by interpolating the variables appearing in staggered meshes is adopted on cylindrical coordinate formation. Computation was carried out for two kinds of Reynolds number, $10^5\;and\;1.5{\times}10^5$ defined by diameter of outer pipe and time-mean driving jet velocity. Results show that periodic vortex shedding from the jet mixing layer is profound and related unsteady flow characteristics prevail over the entire region. Spatial distribution of pressure and kinetic energy, fluctuation of static wall pressure, together with radial velocity components are examined in terms of instantaneous and time-mean point of views.

  • PDF