• Title/Summary/Keyword: Flow Frequency

Search Result 2,624, Processing Time 0.029 seconds

Numerical Analysis of the Unsteady Subsonic Flow around a Plunging Airfoil

  • Lee, Kyungwhan;Kim, Jaesoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.201-209
    • /
    • 2013
  • Much numerical and experimental research has been done for the flow around an oscillating airfoil. The main research topics are vortex shedding, dynamic stall phenomenon, MAV's lift and thrust generation. Until now, researches mainly have been concentrated on analyzing the wake flow for the variation of frequency and amplitude at a low angle of attack. In this study, wake structures and acoustic wave propagation characteristics were studied for a plunging airfoil at high angle of attack. The governing equations are the Navier-Stokes equation with LES turbulence model. OHOC (Optimized High-Order Compact) scheme and 4th order Runge-Kutta method were used. The Mach number is 0.3, the Reynolds number is, and the angle of attack is from $20^{\circ}$ to $50^{\circ}$. The plunging frequency and the amplitude are from 0.05 to 0.15, and from 0.1 to 0.2, respectively. Due to the high resolution numerical method, wake vortex shedding and pressure wave propagation process, as well as the propagation characteristics of acoustic waves can be simulated. The results of frequency analysis show that the flow has the mixed characteristics of the forced plunging frequency and the vortex shedding frequency at high angle of attack.

Characteristics of Flow Over a Rotationally Oscillating Cylinder (주기적으로 회전하는 원형실린더 주위의 유동특성)

  • Choe, Hae-Cheon;Choe, Seong-Ho;Gang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.515-523
    • /
    • 2002
  • Effects of rotary oscillation on unsteady laminar flow past a circular cylinder have been investigated in this study. Numerical simulations are performed for the flow at Re=100 in the range of 0.2<$\Omega$<2.5 and 0.02<$St_f$<0.8, where $\Omega$ and $St_f$ are, respectively, the maximum rotation velocity and rotation frequency normalized by the free-stream velocity and cylinder diameter. Results show that rotary oscillation has significant effects on the flow. When the rotation frequency is near the natural vortex-shedding frequency, lock-on occurs and the lock-on frequency range becomes wider as the rotation velocity increases. In a certain range of the rotation frequency and velocity, modulations in the velocity, lift and drag signals occur and this modulation frequency is expressed as a linear combination of the rotation frequency and vortex-shedding frequency. The mean drag and amplitude of the lift fluctuations show local minima near the boundary between the lock-on non and lock-on regions.

Low Flow Frequency Analysis of Steamflows Simulated from the Stochastically Generated Daily Rainfal Series (일 강우량의 모의 발생을 통한 갈수유량 계열의 산정 및 빈도분석)

  • Kim, Byeong-Sik;Gang, Gyeong-Seok;Seo, Byeong-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.265-279
    • /
    • 1999
  • In this study, one of the techniques on the extension of low flow series has been developed, in which the daily streamflows were simulated by the Tank model with the input of extended daily rainfall series which were stochastically generated by the Markov chain model. The annual lowest flow serried for each of the given durations were formulated form the simulated daily streamflow sequences. The frequency of the estimated annual lowest flow series was analyzed. The distribution types to be used for the frequency analysis were two-parameter and three-parameter log-normal distribution, two-parameter and three-parameter Gamma distribution, three-parameter log-Gamma distribution, Gumbel distribution, and Weibull distribution, of which parameters were estimated by the moment method and the maximum likelihood method. The goodness-of-fit test for probability distribution is evaluated by the Kolmogorov-Sminrov test. The fitted distribution function for each duration series is applied to frequency analysis for developing duration-low flow-frequency curves at Yongdam Dam station. It was shown that the purposed technique in this study is available to generate the daily streamflow series with fair accuracy and useful to determine the probabilistic low flow in the watersheds having the poor historic records of low flow series.

  • PDF

Effects of Pulsating Flow on the Performance of a Plate Heat Exchanger (맥동유동이 판형 열교환기 성능에 미치는 영향)

  • Gang, B.H.;Kim, D.K.;Park, K.K.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1479-1484
    • /
    • 2003
  • The heat transfer enhancement by pulsating flow in a plate heat exchanger has been experimentally investigated in this study. The effect of the pulsating flow, such as pulsating frequency and flow rate, on the heat transfer as well as pressure drop in a plate heat exchanger has been studied in detail. Reynolds number in cold side of a plate heat exchanger is varied $100{\sim}530$ while that of hot side is fixed at 620. The pulsating frequency is considered in the range of $5{\sim}30$ Hz. The results of the pulsating flow are also compared with those of steady flow. It is found that the average heat transfer rate as well as pressure drop is increased as flow rate is increased for both steady flow and pulsating flow cases. When pulsating flow is applied to the plate heat exchanger, heat transfer could be substantially increased in particular ranges of pulsating frequency or Strouhal number; $St=0.36{\sim}0.60$ and pressure drop is also increased, compared with those of steady flow.

  • PDF

Research on Frequency Average Analysis of vibrational Power Flow Analysis (진동파워흐름해석의 주파수 평균해석에 대한 연구)

  • Lee, Jea-Min;Hong, Suk-Yoon;Park, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.971-977
    • /
    • 2005
  • Power Flow Analysis (PFA) is developed for the effective predictions of frequency-averaged vibrational response in medium-to-high frequency ranges. In PFA, the power coefficients of semi-infinite structure and for-field energy density are used to predict the vibrational responses of structures. Generally, at high frequencies, PFA can predict narrow-band frequency-averaged vibrational responses of built-up structures. However, in low- to medium frequency ranges, the dynamic responses obtained by PFA represent broad-band frequency-averaged vibrational energy densities. For the prediction of vibrational response variance in Power Flow Finite Element Method (PFFEM), the variances of input power and joint element matrix describing structural coupling relationship are derived. Finally, for the validity of developed formulation, numerical examples for two co-planer plates are performed and the vibrational response variance of the structure are compared with the results of classical and PFFEM solutions.

  • PDF

A Characteristics of pressure Propagation According to Frequency Changes in a Hydraulic Pipeline (유압관로의 주파수변화 따른 압력전파특성)

  • 유영태;나기대;김지환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.71-79
    • /
    • 2002
  • In this paper, an oil hydraulic pipeline is terminated by both rotary sinusoidal flow generator at upstream oriffice at down stream. The pulsating pressure wave from generated by the rotary sinusoidal flow generator, is measured by using sensor. In the analysis of this paper, a component of the fundamental frequency is obtained by using Laplace transformation.. The experimental and analytical results make clear that (1) viscosity is significant role in hydraulic pipe. (2) When pulsating frequency is matched with the natural frequency, resonance frequency occured periodically. According to the study proposed here, dynamic pressure in a circular oil pipe is expressed in propagation of pressure wave with respect to frequency and Bessel function. The resonance at oil temperature $20^{\circ}$$0^{\circ}C$ in this study. The abrupt change of gain value is due to effect of resonance frequency. The results of experiment are compared with the calculated results, and agreement of both results is fairly good.

Unsteady Flow Effects on Extinguishing Concentrations in Jet Diffusion Flames (제트확산화염 소화농도의 비정상 유동효과)

  • Ji, Jung-Hoon;Oh, Chang-Bo;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.27-31
    • /
    • 2009
  • An experimental study on the unsteady effect of the extinction limit was performed in ethene jet diffusion flames. To impose the unsteadiness on jet flames, the amplitude and frequency of a co-flow velocity was varied, and the two inert gases, $N_2$ and $CO_2$, were used to dilute the oxidizer for extinguishing concentration. The experimental results shows that large amplitude of velocity induces a low extinguishing concentration, which implies that flow variation affects the blow out mechanism. Also, the flow oscillation effects under high frequency attenuates the flame extinction. These results means that flow unsteadiness extends the extinction limit and finally minimum extinction concentration by inert gases. When the Stoke's 2nd Problem is introduced to explain the flow unsteadiness on extinction concentration, the solution predicts the effect of amplitude and frequency of velocity well, and hence it is concluded the effect of low frequency velocity excitation was attributed only to flow effect.

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.

Lock-on Characteristics of wake behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 공진특성)

  • Lee Jung Yeop;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.18-21
    • /
    • 2004
  • Lock-on characteristics of the flow around a circular cylinder performing a rotationally oscillation with a relatively high forcing frequency have been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), amplitude of oscillation $(\theta_A)$, and frequency ratio $F_R=f_f\;/\;f_n$, where $f_f$ is the forcing frequency and if is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14\times10^3,\;\pi/15\leq\theta_A\leq\pi/3$, and $F_R=1.0$. The effects of this active control technique on the lock-on flow regime of the cylinder wake were evaluated through wake velocity measurements and spectral analysis of hot-wire signals. The rotary oscillation modified the flow structure of near wake significantly. The lock-on phenomenon was found to occur in the range of frequency encompassing the natural vortex shedding frequency. In addition, when the amplitude of oscillation is less than a certain value, the lock-on phenomenon was occurred only at $F_R=1.0$. The lock-on range expanded and vortex formation length decreased as the amplitude of oscillation increases. The rotary oscillation generated small-scale vortex structure just near the cylinder surface.

  • PDF

Discrete-vortex Simulation of Turbulent Separation Bubble Excited by Acoustic Perturbatioons (음향교란을 받는 난류박리기포의 이산와류 수치해석)

  • 임재욱;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.775-786
    • /
    • 1992
  • Studies are made of the turbulent separation bubble in a two-dimensional semi-infinite blunt plate aligned to a uniform free stream when the oncoming free stream contains a pulsating component. The discrete-vortex method is applied to simulate this flow situations because this approach is effective to represent the unsteady motions of turbulent shear layer and the effect of viscosity near the solid surface. The two key external paramenters in the free stream, i.e., the amplitude of pulsation, A, and the frequency parameter St[=fH/ $U_{1}$], are dealt with in the present numerical computations, A particular frequency gives a minimum reattachment which is related to the drag reduction and the most effective frequency is dependent on the most amplified shedding frequency. The turbulent flow structure is scrutinized. A comparison between the unperturbed flow and the perturbed at the particular frequency of the minimum reattachment length of the separation bubble suggests that the large-scale structure is associated with the shedding frequency and the flow instabilities.