• 제목/요약/키워드: Flow Frequency

검색결과 2,636건 처리시간 0.029초

Influence of fluidelastic vibration frequency on predicting damping controlled instability using a quasi-steady model in a normal triangular tube array

  • Petr Eret
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1454-1459
    • /
    • 2024
  • Researchers have applied theoretical and CFD models for years to analyze the fluidelastic instability (FEI) of tube arrays in steam generators and other heat exchangers. The accuracy of each approach has typically been evaluated using the discrepancy between the experimental critical flow velocity and the predicted value. In the best cases, the predicted critical flow velocity was within an order of magnitude comparable to the measured one. This paper revisits the quasi-steady approach for damping controlled FEI in a normal triangular array with a pitch ratio of P/d = 1.375. The method addresses the fluidelastic frequency at the stability threshold as an input parameter for the approach. The excellent agreement between the estimated stability thresholds and the equivalent experimental results suggests that the fluidelastic frequency must be included in the quasi-steady analysis, which requires minimal computing time and experimental data. In addition, the model allows a simple time delay analysis regarding flow convective and viscous effects.

Transient rheological probing of PIB/hectorite-nanocomposites

  • Sung, Jun-Hee;Mewis, Jan;Moldenaers, Paula
    • Korea-Australia Rheology Journal
    • /
    • 제20권1호
    • /
    • pp.27-34
    • /
    • 2008
  • Clay suspensions in liquid polymers exhibit a time-dependent behaviour that includes viscoelastic as well as thixotropic features. Because of the presence of interacting clay platelets, particulate networks can develop, which are broken down during flow and rebuild upon cessation of the flow. Here, the use of thixotropic techniques in probing flow-induced structures in nanocomposites is explored with data on a hectorite-poly(isobutylene) model system. By means of fast stress jump measurements the hydrodynamic contributions to the steady state stresses are determined as well as those caused by the stretching of the clay floes. Flow reversal measurements do not provide a clear indication of flow-induced anisotropy in the present case. The recovery of the clay microstructure upon cessation of flow is followed by means of overshoot and dynamic measurements. The development of a particulate network is detected by the appearance and growth of a low frequency plateau of the storage moduli. The modulus-frequency curves after various rest times collapse onto universal master curves, regardless of the pre-shear history or temperature. The scaling factors for this master curve are the crossover parameters. The crossover moduli are nearly a linear function of the crossover frequency, the relation being identical for recovery after shearing at different shear rates. This function depends, however, on temperature.

주기적으로 회전진동하는 원주 후류의 Dynamic PIV 속도장 측정 (Dynamic PIV Measurements of Wake behind a Rotationally Oscillating Circular Cylinder)

  • 이정엽;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.134-137
    • /
    • 2007
  • The temporal evolution of wake behind a circular cylinder oscillating rotationally with a relatively high forcing frequency has been investigated experimentally using a dynamic PIV technique. Experiments were carried out with varying the frequency ratio $F_R\;(=f_f/f_n)$ in the range from 0.0 (stationary) to 1.6 at oscillation amplitude of ${\theta}_A=30^{\circ}$ and Reynolds number of $Re=4.14{\times}10^3$. Depending on the forcing condition ($F_R$), the flow was divided into three regimes; non-lock-on ($F_R=0.4$), transition ($F_R=0.8$, 1.6) and lock-on regimes ($F_R=1.0$) with markedly different flow structure in the near-wake region behind the cylinder. When the frequency ratio was less than 1.0 ($F_R{\le}1.0$), the rotational oscillatory motion of the cylinder decreased the length of the vortex formation region and enhanced the mutual interaction between large-scale vortices across the wake centerline. The entrainment of ambient fluid seemed to play an important role in controlling the near-wake flow and shear-layer instability. However, the flow characteristics changed markedly beyond the lock-on flow regime ($F_R=1.0$) due to high-frequency forcing. At $F_R=1.6$, the mutual interactions between the vortices shed from both sides of the cylinder were not so strong. Thereby, the flow entrainment and momentum transfer into the wake center region were reduced. In addition, the size of the large-scale vortices decreased since the lateral extent of the wake was suppressed.

  • PDF

저 주파수 벽면 가진에 의한 밀폐공간 내부 온도장의 공진 특성 실험 (An Experimental Study on Resonance of Temperature Field by Low-Frequency Oscillating Wall in a Side Heated Enclosure)

  • 김서영;김성기;최영돈
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1272-1280
    • /
    • 2001
  • An experimental study has been conducted to elucidate the resonance of natural convection in a side-heated square enclosure having a mechanically oscillating bottom wall. Under consideration is the impact of the imposed oscillating frequency, amplitude and the system Rayleigh number on the fluctuation of air temperatures. The experimental results show that the magnitude of the fluctuation of air temperature is substantially augmented at a specific forcing frequency of the oscillating bottom wall. The resonant frequency is increased with the increase of the Rayleigh number and it is little affected by the amplitude of the oscillating wall. It is also found that the resonant frequency is relevant to the Brunt- V$\"{a}$iS$\"{a}$l$\"{a}$ frequency which represents the stratification degree of the system.

감쇠파 고주파전압의 선행방전을 이용한 Plasma jet의 전기적 기동특성에 대한 실험적 연구 (The Experimental Research On The Electrical Characteristics For The Ignition Of Plasma Jet Using The Advance Discharge Of High Frequency Voltage With Attenuation)

  • 전춘생
    • 전기의세계
    • /
    • 제21권4호
    • /
    • pp.27-38
    • /
    • 1972
  • This paper discusses the characteristics about the ignition of D.C. main discharge is a plasma jet generator, manufactured for trial as non-transferred type, when the electrical energy appropriate to the ignition is supplied to the gap between the electrodes by using advance discharge of attenuating high frequency voltage generated by a high frequency oscillator with mercury spark gap. These characteristics are under the influences of (a) the length of mercury gap in high frequency oscillator and the quantity of hydrogen flow supplied to it, (b) the condenser capacity of the high frequency oscillator circuit, (c) the length of plasma jet torch in D.C. main discharge circuit and the quantity of argon flow supplied to it, (d) the circuit constants of D.C. main discharge circuit. The results for these characteristics, obtained by this research, are considered to be helpful to the designs for the ignition of a plasma jet as well as the welding arc stabilizer by high frequency discharge and the high frequency arc welder.

  • PDF

Numerical Analysis of Unsteady Flow around a Transversely Oscillating Circular Cylinder

  • Moon, Ji-Soo;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권1호
    • /
    • pp.27-33
    • /
    • 2012
  • The relationship between the excitation frequency and the vortex shedding frequency is analyzed during the oscillation of the circular cylinder. Two-dimension unsteady Navier-Stoke's equation is calculated by using the Optimized High Order Compact (OHOC) scheme. The flow condition is Mach number 0.3 and Reynold's number 1000. From the results acquired by calculation, it can be inferred that, when the excitation frequency is near the vortex shedding frequency at the fixed cylinder wake, the oscillation frequency of lift and drag coefficients appears to lock-on. The lock-on refers to a phenomenon in which the aerodynamic coefficient appears as one primary oscillation frequency through excitation and its amplitude is amplified. In the non-lock-on zone, the excitation frequency is not in the lock-on mode anymore and beat is formed in which two or more primary oscillation frequencies of the aerodynamic coefficient are mixed together.

축류송풍기 부착형 공냉식 열교환기의 진동 저감 (Vibration Reduction of an Air Cooled Heat Exchanger with Axial Flow Fan)

  • 정구충;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.75-81
    • /
    • 2000
  • Vibration problems induced by an air cooled heat exchanger with axial flow fan were investigated during the operation of a petrochemical plant. Two different studies were done; one was experimental field test and the other was theoretical verification. To find main cause of the blade passing frequency of the fan after installing additional blockage board at the air inlet of the axial fan, the frequency spectrum was measured. The vibrations of the blade passing frequency became higher. The natural frequency of driving support of the heat exchanger was theoretically calculated. It was approximately equal to the blade passing frequency. During the normal operation of the plant, it was impossible to modify the structure of the driving support. Instead, the blade number was increased to reduce vibration level. It increased the ratio of the forcing frequency to the natural frequency of the driving support over the resonance region.

  • PDF

광음향 변조효과를 이용한 유체의 방향 결정 (Determination of Flow Direction by Using an Acousto-Optic Effect)

  • 김규욱
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1990년도 제5회 파동 및 레이저 학술발표회 5th Conference on Waves and lasers 논문집 - 한국광학회
    • /
    • pp.34-36
    • /
    • 1990
  • The flow direction in a glass tube is measured by using a forward scatering dual beam laser Doppler velocimeter with an acousto-optic modulator. We can determine the flow direction by measuring the shifted Doppler frequency which is dependent on the order of modulation of the laser frequency shifting moves only the Doppler signal, enabling complete separation of the Pedestal and Doppler singal.

  • PDF

동맥 유동해석을 위한 스펙트럴 요소의 개발 (Spectral Element Modeling for the Blood Flow through Artery)

  • 장인준;서보성;이우식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.383-386
    • /
    • 2007
  • As the blood flow characteristics have been recognized to be closely related to various cardiovascular diseases, it is very important to predict them accurate enough in an efficient way. Thus, this paper proposes a one-dimensional spectral finite element model for the human blood vessels. The spectral finite element model is formulated in the frequency-domain by using the exact frequency dependent shape functions and applied to an ascending aorta.

  • PDF

Spiral Groove Seal의 靜特性에 관한 연구 (A Study on the Static Characteristics of Spiral Grooved Seals)

  • Yang, Bo-suk;Iwatsubo, Takuzo
    • Tribology and Lubricants
    • /
    • 제2권1호
    • /
    • pp.30-38
    • /
    • 1986
  • In the paper, static characteristics of spiral grooved seal is theoretically obtained by Using Navier-Stokes equation. In the analysis, inertia term of fluid is considered and the flow and pressure in the steady state are obtained for the groove direction and vertical to the groove direction. As the journal rotating frequency increases, the leakage flow decreases. Therefore, zero net leakage flow is possible at the region of some rotating frequency.