• 제목/요약/키워드: Flow Efficiency

검색결과 4,870건 처리시간 0.038초

다꾸찌방법에 의한 Ni-5%Al 합금 분말의 플라즈마 용사코팅 조건의 최적화 (Optimization of the Plasma Spray Coating Parameters of Ni-5%Al Alloy Powder Using the Taguchi Experimental Method)

  • 이형근
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.120-126
    • /
    • 2002
  • Ni-5%Al alloy powder is widely used as the bond coating powder to improve the adhesive strength between the substrate and coating. The important properties in the bond coating are the deposition efficiency and surface roughness. In this study, it was tried to optimize the plasma spray parameters to maximize the deposition efficiency and surface roughness. In the first step, spray current and hydrogen gas flow rate were optimized in order to increase the deposition efficiency. In the next step, the seven plasma spray variables were selected and optimized to improve both the deposition efficiency and surface roughness using the Taguchi experimental method. By these optimization, the deposition efficiency was improved from about 10 % at the frist time to 51.2 % by the optimization of spray current and hydrogen gas flow rate and finally to 65.2 % by the Taguchi experimental method. The average surface roughness was increased from about $12.9\mu\textrm{m}$ to $15.4\mu\textrm{m}$.

CFD 해석을 이용한 Multi Inner Stage Cyclone 내부의 미세입자제거 효율 예측 및 실험적 검증 (Efficiency Prediction of the Particle Removal Efficiency of Multi Inner Stage(MIS) Cyclone by Computational Fluid Dynamics(CFD) Analysis and Experimental Verification)

  • 김혜민;권성안;이상준
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제46차 하계학술발표논문집 20권2호
    • /
    • pp.243-246
    • /
    • 2012
  • A new multi inner stage(MIS) cyclone was designed to remove the acidic gas and minute particles of harmful materials produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of computational fluid dynamics(CFD) commercial program. Also, the flow locus of particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was -1,000 Pa, the efficiency was the best in this study. Based on the CFD simulation result, the pressure loss and destruction removal efficiency was measured through MIS cyclone experiment.

  • PDF

방해기류 존재시 추적자 가스법을 이용한 푸쉬풀 후드 효율 평가 (Evaluation of Capture Efficiencies of Push-Pull Hood Systems by Trace Gas Method under the Presence of Some Cross-draft)

  • 김태형;하현철;강호경
    • 한국산업보건학회지
    • /
    • 제16권3호
    • /
    • pp.290-301
    • /
    • 2006
  • A push pull hood system is frequently applied to control contaminants evaporated from an open surface tank. Efficiency of push pull hood system is affected by various parameters, such as, cross draft, vessel shapes, tank surface area, liquid temperature. A previous work assisted by flow visualization technique qualitatively showed that a strong cross draft blown from the pull hood to push slot could destroy a stable wall-jet on the surface of tank, resulting in the abrupt escape of smoke from the surface. In this study, the tracer gas method was applied to determine the effect of cross-draft on the capture efficiency qualitatively. A new concept of capture efficiency was introduced, that is, linear efficiency. This can be determined by measuring the mass of tracer gas in the duct of pull hood while the linear tracer source is in between push slot and pull hood. By traversing the linear tracer source from the push slot to the pull hood, it can be found where the contaminant is escaped from the tank. Total capture efficiency can be determined by averaging the linear efficiencies. Under the condition of cross-draft velocities of 0, 0.4, 0.75, 1.05 and 1.47m/s, total capture efficiencies were measured as 97.6, 95.4, 94.6, 92.7 and 70.5% respectively. The abrupt reduction of efficiency with cross-draft velocity of 1.47m/s was due to the destruction of tank surface wall-jet by the counter-current cross-draft. The same phenomenon was observed in the previous flow visualization study. As an alternative to overcome this abrupt efficiency drop, the 20% increase of hood flow rates was tested, resulting in 20% efficiency increase.

1.5단 축류터빈에서의 Clocking 효과에 관한 수치적 연구 (NUMERICAL STUDY ON THE CLOCKING EFFECT IN A 1.5 STAGE AXIAL TURBINE)

  • 박종일;최민석;백제현
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.1-8
    • /
    • 2006
  • Clocking effects of a stator on the performance and internal flow in an UTRC 1.5 stage axial turbine are investigated using a three-dimensional unsteady flow simulation. Six relative positions of two rows of stator are investigated by positioning the second stator being clocked in a step of 1/6 pitch. The relative efficiency benefit of about 1% is obtained depending on the clocking positions. However, internal flows have some different characteristics from that in the previous study at the best and worst efficiency positions, since the first stator wake is mixed out with the rotor wake before arriving at the leading edge of the second stator. Instead of the first stator wake, it is found that the wake interaction of the first stator and rotor has a important role on a relative efficiency variation at each clocking position. The time-averaged local efficiency along the span at the maximum efficiency is more uniform than that at the minimum efficiency. That is, the spanwise efficiency distribution at the minimum efficiency has larger values in mid-span but smaller values near the hub and casing in comparison to those at the maximum efficiency. Moreover, the difference between maximum and minimum instantaneous efficiencies during one period is found to be smaller at the maximum efficiency than at the minimum efficiency.

1.5단 축류 터빈에서의 Clocking 효과에 관한 수치적 연구 (Numerical Study on the Clocking Effect in a 1.5 Stage Axial Turbine)

  • 박종일;최민석;백제현
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.473-480
    • /
    • 2005
  • Clocking effects of a stator on the performance and internal flow in an UTRC 1.5 stage axial turbine are investigated using a three-dimensional unsteady flow simulation. Six relative positions of two rows of stator are investigated by positioning the second stator being clocked in a step of 1/6 pitch. The relative efficiency benefit of about 1% is obtained depending on the clocking positions. However, internal flows have some different characteristics from that in the previous study at the best and worst efficiency positions, since be first stator wake is mixed out with the rotor wake before arriving at the leading edge of the second stator. Instead of the first stator wake, it is found that the wake interaction of the first stator and rotor has a important role on a relative efficiency variation at each clocking position. The time-averaged local efficiency along the span at the maximum efficiency is more uniform than that at the minimum efficiency. That is, the spanwise efficiency distribution at the minimum efficiency has larger values in mid-span but smaller values near the hub and casing in comparison to those at the maximum efficiency. Moreover, the difference between maximum and minimum instantaneous efficiencies during one period is found to be smaller at the maximum efficiency than at the minimum efficiency.

  • PDF

CORRELATION STUDY OF THE MEASURED TUMBLE RATIOS USING THREE DIFFERENT METHODS: STEADY FLOW RIG; 2-DIMENSIONAL PIV; AND 3-DIMENSIONAL PTV WATER FLOW RIG

  • Kim, M.J.;Lee, S.H.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.441-448
    • /
    • 2006
  • In-cylinder flows such as tumble and swirl play an important role on the engine combustion efficiencies and emission formations. The tumble flow, which is dominant in current high performance gasoline engines, is able to effect fuel consumptions and emissions under a partial load condition in addition to the volumetric efficiency under a wide open throttle condition. Therefore, it is important to optimize the tumble ratio of a gasoline engine for better fuel economy, lower emissions, and maximum volumetric efficiency. First step for optimizing a tumble ratio is to measure a tumble ratio accurately. For a tumble ratio measurement, many different methods have been developed and used such as steady flow rig, PIV, PTV, and LDV. However, it is not well known about the relations among the measured tumble ratios using different methods. The purpose of this research is to correlate the tumble ratios measured using three different methods and find out merits and demerits of each measurement method. In this research the tumble flow was measured, compared, and correlated using three different measurement methods at the same engine: steady flow rig; 2-dimensional PIV; and 3-dimensional PTV water flow rig.

축류 송풍기 허브측 불균일 유입유동 현상 및 성능 특성 (Performance Characteristics Due to the Inflow Distortion near Hub in an Axial Flow Fan)

  • 장춘만;최승만;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.663-669
    • /
    • 2005
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, round shape and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. In case of right-angled front shape, axisymmetric distorted inflow is induced by flow separation at the sharp edge of hub-cap, and the characteristics of the inflow depends on the distance between hub-cap and blade leading edge. Flow analysis of the blade passage is peformed by solving the three-dimensional Reynolds-averaged Navier-Stokes equations. numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flowangle. The changed inlet flow angle near the hub invokesa flow separation on the blade surfaces, thus deteriorating the fan efficiency. The effect of the distance between hub-cap and blade leading edge on the efficiency is also discussed.

  • PDF

난류형 클린룸내의 Layout 변화에 따른 분진제거 특성에 관한 연구 (A Study on the Phenomena of Dust Removal by the Layout Changes in the Turbulent Type Clean Room)

  • 김연희
    • 건설안전기술
    • /
    • 통권41호
    • /
    • pp.80-87
    • /
    • 2007
  • The purpose of this paper is to investigate the removal efficiency of fine dusts as the configuration condition of machinery and equipments in Clean Room and to analyze the flowing behaviors of fine dusts as the layout of Clean Room. The layout of the Clean Room was classified into side layout type, 2 center line type and center concentration type layout, and the flow rates used in this research were 0.22m/s, 0.44m/s and0.80m/s. Dust removal efficiency as layout change was decreased 37% for side layout type, 31% for 2 centerline type and 20% for center concentration type layout at the flow rate of 0.22m/s, compared with the state without machinery and equipments in Clean Room. The efficiency was decreased 42% for side layout type,22% for 2 center line type and 8% for center concentration type layout at the flow rate of 0.44m/s, and decreased 20% for side layout type, 18% for 2 center line type and 10% for center concentration type layout at the flow rate of 0.80m/s. According to the result of dust removal behavior, $0.3\mum$, $1\mum$and $3\mum$dust except for $5\mum$showed the higher change of the behavior in side layout type than in center concentration type layout due to the change of air flow. It was confirmed that removal behavior depends on the layout of machinery and equipments as the dust size decreases.

  • PDF

FanDAS-CFX 결합을 통한 고효율-저소음 축류 송풍기의 개발 (Development of a High-efficiency and Low-noise Axial Flow Fan through Combining FanDAS and CFX codes)

  • 이찬;길현권;조계현
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.37-41
    • /
    • 2012
  • High-efficiency and low-noise axial flow fan is developed by combining the FanDAS, a computerized axial fan design/performance analysis system, and CFD software(CFX). Based on fan design requirements, FanDAS conducts 3-D blade geometry design, quasi-3D flow/ performance analyses and noise evaluation by using through-flow analysis method and noise models for discrete frequency and broadband noise sources. Through the parametric studies of fan design variables using FandDAS, preliminary and baseline design is achieved for high efficiency and low noise fan, and then can be coupled with a CFD technique such as the CFX code for constructing final and optimized fan design. The FanDAS-CFX coupled system and its design procedure are applied to actual fan development practice. The FanDAS provides an optimized 3-D fan blade geometry, and its predictions on the performance and the noise level of designed fan are well agreed with actual test results.

수리실험을 이용한 지하유입시설 유입구 형상에 따른 수리학적 특성 분석 (Study of Hydraulic Characteristics with the Shape of the Intake of an Underground Inflow Facility using Hydraulic Experiments)

  • 성호제;박인환;이동섭
    • 한국안전학회지
    • /
    • 제33권4호
    • /
    • pp.119-126
    • /
    • 2018
  • In recent years, as flood damage caused by heavy rains increased, the great-depth tunnel using urban underground space is emerging as a countermeasure of urban inundation. The great-depth tunnel is used to reduce urban inundation by using the underground space. The drainage efficiency of great-depth tunnel depends on the intake design, which leads to increase discharge into the underground space. The spiral intake and the tangential intake are commonly used for the inlet facility. The spiral intake creates a vortex flow along the drop shaft and reduces an energy of the flow by the wall friction. In the tangential intake, flow simply falls down into the drop shaft, and the design is simple to construct compared to the spiral intake. In the case of the spiral intake, the water level at the drop shaft entrance is risen due to the chocking induced by the flowrate increase. The drainage efficiency of the tangential intake decreases because the flow is not sufficiently accelerated under low flow conditions. Therefore, to compensate disadvantages of the previously suggested intake design, the multi-stage intake was developed which can stably withdraw water even under a low flow rate below the design flow rate. The hydraulic characteristics in the multi-stage intake were analyzed by changing the flow rate to compare the drainage performance according to the intake design. From the measurements, the drainage efficiency was improved in both the low and high flow rate conditions when the multi-stage inlet was employed.