• Title/Summary/Keyword: Flow Disturbance Factor

Search Result 25, Processing Time 0.027 seconds

Deviation Characteristics of Clamp-on Type Ultrasonic Flowmeter Installed in Downstream of Valves (밸브 하류에 설치된 건식 초음파유량계의 편차특성)

  • Lee, Dong-Keun;Cho, Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.12-18
    • /
    • 2012
  • This study was performed to found out the deviations for clamp-on type ultrasonic flowmeter installed in downstream of valves. It was selected three types of two-path flowmeter mainly used for K-water as test. Experiment carried out to confirmed characteristics of deviation depending on the sensor location, straight pipe length and maker for 1-path, 2-path and 4-path combined 2-path flowmeter. It was selected two kinds of valves with 100 % and 50 % opening, butterfly valves and gate valves, for flow disturbance factor. Finally, we suggested number of sensors by maker, straight pipe length and installed location of sensors satisfying the tolerance depending on the experiment results.

Countermeasure on High Vibration of Branch Pipe with Pressure Pulsation Transmitted from Main Steam Header (주증기 배관 헤더의 압력맥동에 대한 분기 배관의 고진동 대책)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.988-995
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve, and header generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 700 MW nuclear power plant. The exciting sources and response of the piping system are investigated by using on-site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3 Hz, 4.4 Hz and 6.6 Hz transmitted from main steam balance header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness and damping factor were installed to reduce excessive vibration.

Characteristics of Multipath Ultrasonic Flowmeter Installed Upstream and Downstream of Flow Disturbance Factors-Contraction, Expansion, and Tee Pipe (유동교란인자(축소·확대관, Tee관)상하류에 설치된 다회선초음파 유량계의 특성)

  • Lee, Dong-Keun;Cho, Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.877-883
    • /
    • 2012
  • Multipath ultrasonic flowmeters are increasingly being used for the purpose of accurate flow measurement. However, an installation standard has not yet been established for these flowmeters, and this can cause considerable confusion during field installation. There is a need for a minimum straight run to ensure the measurement accuracy of a flowmeter installed upstream and downstream of flow disturbance factors-expansion, contraction, and tee pipes. Experiments were performed by using multipath flowmeters that have less than ${\pm}0.5%$ accuracy-4-paths 1-unit and 2-paths 1-unit are of foreign make, whereas 5-paths 2-units are of domestic make-to determine the straight run under the above conditions. We carried out experiments repeatedly by considering a straight run, velocity, and suggested installation standards for a multipath ultrasonic flowmeter that satisfies the tolerance limits.

Heat Transfer and Pressure Drop Characteristics of a Horizontal Channel Filled with Porous Media (다공성매질을 삽입한 수평채널의 열전달 및 압력강하 특성)

  • Son, Young-Seok;Shin, Jee-Young;Cho, Young-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.244-251
    • /
    • 2009
  • Porous media have especially large surface area per volume, which contain complex fluid passage. If porous media can be applied to cool a CPU or an electronic device with large heat dissipation, it could result in heat transfer enhancement due to the enlargement of the heat transfer area and the flow disturbance. This study is aimed to identify the heat transfer and pressure drop characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed with the various heat flux, velocity and pore density conditions. Permeabilities, which is deduced from Non-Darcy flow model, become lower with increasing pore density. Nusselt number also decreases with higher pore density. High pore density with same porosity case shows higher pressure loss due to the increase of surface area per unit volume. The fiction factor decreases rapidly with increase of Reynolds number in Darcy flow region. However, it converges to a constant value of the Ergun coefficient in Non-Darcy flow region.

A Study on the Fundamental Cause of Stall Stagnation Phenomena in Surges in Compressor Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.119-137
    • /
    • 2017
  • Although the stall stagnation phenomena have often been experienced in site and also analytically in numerical experiments in surges in systems of compressors and flow paths, the fundamental causes have not been identified yet. In order to clarify the situations, behaviours of infinitesimal disturbance waves superposed on a main flow were studied in a simplified one-dimensional flow model. A ratio of the amplifying rate of the system instability to the characteristic slope of the compressor element was surveyed as the instability enhancement factor. Numerical calculations have shown the following tendency of the factor. In the situation where both the sectional area ratio and the length ratio of the delivery flow-path to the suction duct are sufficiently large, the enhancement factors are greater in magnitude, which means occurrence of ordinary deep surges. However, in the situation where the area ratio and/or the length ratio is relatively smaller, the enhancement factor tends to lessen significantly, which situation tends to suppress deep surges for the same value of the characteristic slope. It could result in the stall stagnation condition. In the domain of area ratio vs. length ratio of the delivery duct to the suction duct, contour-lines of the enhancement factor behave qualitatively similar to those of the stall stagnation boundaries of a fan analytically obtained, suggesting that a certain range of the enhancement factor values could specify the stagnation occurrence. The significant decreases in the factors are observed to accompany appearances of phase lags and travelling waves in the wave motions, which macroscopically suggests breaking down of the complete surge actions of filling and emptying of the air in the delivery duct. The strength of the action is deeply related with acoustic interferences and is evaluated in terms of the volume-modified reduced resonance frequency proposed by the author. These observations have shown the fundamental cause and the sequence of the stall stagnation in principle.

The Compensation Method of the Modulation-delay for the Voltage type Dual PWM Converter and Composition of the Instantaneous Current Controller (전압형 Dual PWM 컨버터의 변조각 지연에 따른 보상법 및 순시전류 제어기 구성)

  • Chung, Yon-Tack;Kim, Won-Chul;Lee, Sa-Young;Chun, Ji-Yong;Kim, Hyeun-Bong;Lee, Keun-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.369-372
    • /
    • 1994
  • In this paper, a voltage type dual PWM converter which achives the bidirectional power flow between a AC supply and a DC bus voltage is described. In PWM modulator, there exist a time difference between the sampling time and carrier wave, it achieves stable modulation even the disturbance in the synchronous AC source voltage. And this paper proposes the compensation method and the control method related a disturbance of synchronous signal using the low pass filter and phase shifter for the stable modulation. As a result the voltage type dual PWM converter makes the imput current wave as sinusoid, and performs the high power factor driving.

  • PDF

A Study on the Stability Control of Injection-molded Product Weight using Artificial Neural Network (인공신경망을 이용한 사출성형품의 무게 안정성 제어에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.773-787
    • /
    • 2020
  • In the injection molding process, the controlling stability of products quality is a very important factor in terms of productivity. Even when the optimum process conditions for the desired product quality are applied, uncontrollable external factors such as ambient temperature and humidity cause inevitable changes in the state of the melt resin, mold temperature. etc. Therefore, it is very difficult to maintain prodcut quality. In this study, a system that learns the correlation between process variables and product weight through artificial neural networks and predicts process conditions for the target weight was established. Then, when a disturbance occurs in the injection molding process and fluctuations in the weight of the product occur, the stability control of the product quality was performed by ANN predicting a new process condition for the change of weight. In order to artificially generate disturbance in the injection molding process, controllable factors were selected and changed among factors not learned in the ANN model. Initially, injection molding was performed with a polypropylene having a melt flow index of 10 g/10min, and then the resin was replaced with a polypropylene having a melt floiw index of 33 g/10min to apply disturbance. As a result, when the disturbance occurred, the deviation of the weight was -0.57 g, resulting in an error of -1.37%. Using the control method proposed in the study, through a total of 11 control processes, 41.57 g with an error of 0.00% in the range of 0.5% deviation of the target weight was measured, and the weight was stably maintained with 0.15±0.07% error afterwards.

A Study on Performance Characteristics of Wetted-type Multi Path Ultrasonic Flowmeter (습식 다회선 초음파유량계의 특성평가 연구)

  • Lee, Dong-Keun;Cho, Yong;Ko, Jae-Myoung;Park, Tae-Jin;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.5-9
    • /
    • 2013
  • An experimental investigation has been carried out in order to evaluate characteristics of wetted-type multi-path ultrasonic flowmeters. The multi-path ultrasonic flowmeters were installed at various entrance and exit locations for several cases of pipe fitting(straight, $90^{\circ}$ double elbow) and valve(gate valve, butterfly valve). We measured the flow-rate at each location. The measurement data of test flowmeter were compared with the measured data of reference flowmeter. The uncertainties of reference flowmeter and test flowmeter are 0.3 %, 0.4 %, respectively. The results demonstrate the effects of flowmeter location as well as the measurement errors in flow rate. The distance between the flow disturbance factor and a flowmeter was an important element of the test.

Analysis and Design of Sliding Mode Control for a Single-Phase AC-DC Converter

  • Sawaengsinkasikit, Winyu;Tipsuwanporn, Vittaya;Tarasantisuk, Chanlit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2291-2294
    • /
    • 2003
  • In this paper, analysis and control design of ac-dc converter, normally nonlinear time-varying system, using sliding mode controller to achieve fast output voltage response, disturbance rejection and robust system in the presence of load variation are demonstrated. The objective of this method is to develop methodology for output voltage to be constant and input current sinusoidal that results in nearly unity power factor, respectively. In addition the converter can be also bidirectional power flow. Simulation results using Matlab/Simulink show the effectiveness of sliding mode control system compared with linear feedback controller to guarantee enhanced PF>0.98, THD<5%, and ripple output voltage is less than 1% at the maximum output power.

  • PDF

Design of sinusoidal shape channel PCHEs for supercritical LNG based on CFD simulation (CFD 시뮬레이션 기반 초임계 LNG용 사인함수 PCHE 설계)

  • Fan, Jinxing;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.69-76
    • /
    • 2021
  • Printed circuit heat exchanger (PCHE) is a compact heat exchanger with good heat transfer performance, high structure integrity, and reliability over a wide range of temperatures and pressures. Instead of the traditional zigzag and straight shape channel, the sinusoidal shape channel was adopted in this study to investigate the relation of thermal-hydraulic performance and waviness factors (period and amplitude). The local flow characteristics and the heat flux distribution were compared to verify the effects of period and amplitude on heat transfer performance. As the period of channel becomes shorter, the rapid change of the flow direction can produce high flow separation around the corner leading to the disturbance of the boundary layer opposite wall. The nonuniform distribution of flow velocity appeared around the corner positions can promote fluid mixing and lead to higher thermal performance. An evaluation index was used to compare the comprehensive performance of PCHE considering the Nusselt number and Fanning factor. Based on the simulation results, the optimal design parameters of PCHE channel shape were found that the channel with an equivalent bending angle of 15° offers the highest heat flux capacity.