• Title/Summary/Keyword: Flow Cone Flow

Search Result 288, Processing Time 0.024 seconds

Numerical Investigation of Flows around Space Launch Vehicles at Mid-High Altitudes (중/고고도 영역에서의 우주발사체 주위 유동에 대한 수치적 연구)

  • Choi, Young Jae;Choi, Jae Hoon;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • In the present study, to investigate flows around space launch vehicles at mid-high altitudes efficiently, a three-dimensional unstructured mesh Navier-Stokes solver employing a Maxwell slip boundary condition was developed. Validation of the present flow solver was made for a blunted cone-tip configuration by comparing the results with those of the DSMC simulation and experiment. It was found that the present flow solver works well by capturing the velocity slip and the temperature jump on the solid surface more efficiently than the DSMC simulation. Flow simulations of space launch vehicles were conducted by using the flow solver. Mach number of 6 at the mid-high altitude around 86km was considered, and the flow phenomena at the mid-high altitude was discussed.

Correlation of Droplet Flow Rate and Spray Cooling Heat Transfer in Forced Convection and Nucleate Boiling Region (강제대류 및 핵비등영역에 있어서 액적유량과 분무냉각 열전달의 상관관계에 관한 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.143-148
    • /
    • 2008
  • In the present study, the correlation between the Nusselt number and Reynolds number was developed for forced convection and nucleate boiling region in spray cooling. Also the effect of droplet subcooling on spray cooling heat transfer was investigated. Full cone spray nozzles were employed for spray cooling experiment, and water and FC-77 were used for developing the correlation. From the experimental results, the correlation between the Nusselt number and Reynolds number based on droplet-flow-rate was developed. The correlation shows good predictions with ${\pm}30%$ error for water and FC-77.

  • PDF

Study on Combustion Characteristics of Pre-combustion Chamber Type Diesel Engine with Different Throat Shape (예연소실식 디젤엔진의 분구 형상 변화에 따른 연소 특성 연구)

  • Choi, Jonghui;Lee, Seungpil;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.116-121
    • /
    • 2017
  • Pre-combustion chamber type indirect diesel engines have different combustion characteristics compared with those of common rail direct injection engine. The CONVERGE, specific engine CFD program, was used to simulate hollow cone spray model and combustion. The air-fuel mixture flow propagating from pre-combustion chamber to cylinder was concentrated at top half and center of the pre-combustion chamber throat. Stronger mixture flow was formed at smaller and longer throat cases. As a result, thermal efficiency and fuel consumption were improved for modified throat shape and the soot emission was also reduced.

A numerical study on the characteristics of internal flows in a gasoline direct swirl injector (직접분사식 가솔린 선회 분사기에서의 내부 유동특성에 관한 수치 해석)

  • Bae, S.H.;Moon, S.Y.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.9-15
    • /
    • 2001
  • The internal flow characteristics of a gasoline direct injector have been studied to improve fuel economy and reduce exhaust emissions. Computational Fluid Dynamics (CFD) is used to examine the internal flow of the GDI with the purpose of designing the optimum geometry of the injector. This study tests orifice length, cone angle, swirl angle, orifice diameter and needle lift. The results show that optimum sizes of the orifice length, cone angle, swirl angle, orifice diameter and needle lift are 0.8mm, $140^{\circ},\;120^{\circ},\;80mm\;and\;70{\mu}m$, respectively. The size of the lift does not affect the formation of the air core signficantly near the tip of the needle compared to the ball-type needle. The vena contracta phenomenon near the orifice inlet can be released by smoothing the edge.

  • PDF

An Experimental Study on the Variable Sonic Ejector System (가변형 음속 이젝터 시스템에 관한 실험적 연구)

  • Lee, Jun-Hee;Jung, Sung-Jae;Kim, Heuy-Dong;Koo, Byoung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2035-2040
    • /
    • 2004
  • A cone cylinder is used to obtain variable operation conditions for the sonic ejector-diffuser system. The cone cylinder is designed to move upstream and downstream to change the ejector throat area ratio, thus obtaining variable mass flow rates. The present study investigates the effects of ejector throat area ratio and operating pressure ratio on the entrainment of secondary stream for the variable sonic ejector system. In experiment, the ejector throat area is varied in the range from ${\psi}=11.88$ to 66.69, and the operating pressure ratio from $p_{0p}/p_a=1.25$ to 9.0. The results show that the variable sonic ejector system is suitable for a required entrainment ratio of secondary stream by altering the ejector throat area ratio and operating pressure ratio.

  • PDF

A Fundamental Study of a Variable Critical Nozzle Flow (가변형 임계 노즐유동에 관한 기초적 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.484-489
    • /
    • 2003
  • The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle.

  • PDF

A Study on Steady and Unsteady Behavior of Helium Jet in the Stationary Atmosphere (헬륨 기체분류의 정상적 비정상적 거동에 관한 연구)

  • Kim, B.G.;Suh, Y.K.;Ha, J.Y.;Kwon, S.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.34-45
    • /
    • 1993
  • This study aims to analyze the mixing characteristics of hydrogen considered as a new fuel for internal combustion engines. As the physical property of helium gas is similar to that of hydrogen, helium gas was used in this study. To analyze the steady and unsteady behavior of jet, helium gas was injected into the stationary atmosphere at the normal temperature and pressure. Concentration of helium gas in the center of jet flow is in inverse proportion with axial distance from the nozzle tip. This agrees with the free jet theory of Schlichting. The relative equation for dimensionless concentration to radial/axial distance the axial distance of potential core region, the cone angle a of the jet flow and the relative equation for arriving distance of the front of jet flow to the lapse of time are obtained. But free jet theory of Schlichting in the dimensionless concentration is not in agreement with the present experimental results of the distance of the radial direction. It needs more study. When the arrival frequency of jet flow is used as a parameter, the transition area changing from unsteady flow area into steady flow area becomes gradually wider downstream, but its ratio for the whole unsteady flow area gradually decreases.

  • PDF

Study of Ceramic Sub-Micron Particle Patterning by Electro-Hydrodynamic Printing (전기-수력학 프린팅을 이용한 세라믹 미세입자 패턴에 관한 연구)

  • Lee Dae-Young;Kim Sang-Yoon;Yu Tae-U;Kim Yong-Jun;Hwang Jungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.504-511
    • /
    • 2005
  • The generation of fine relics of inorganic and metallic materials from precursor suspensions is of significant current interest as it holds the key to the fabrication of display and printed circuit board. Some novel printing methods depositing ceramic particles have been suggested in recent years. When a conducting liquid is supplied to a capillary nozzle at a low flow rate and when the interface between air and the liquid is charged to a sufficiently high electrical potential, the liquid meniscus takes the form of a stable cone, whose apex emits a microscopic jet. This is called as a cone-jet mode. In our experiments, an alumina particles flowing through a nozzle were subjected to electro-hydrodynamic printing in the cone-jet mode. The pattern of 'YONSEI' characters was tested at $10 {\mu}l/min$ of alumina ink flow rate and different applied voltages. At an applied voltage of 6 kV, feature size was in the range of $250 {\mu}m.$

An Analysis of Cone Penetration Based on Arbitrary Larangian-Eulerian Method (Arbitrary Lagrangian-Eulerian 기법에 의거한 콘 관입 해석)

  • Oh, Se-Boong
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.85-98
    • /
    • 2001
  • Cone penetration was analyzed by arbitrary Lagangian-Eulerian(ALE) method. In order to simulate full penetration, steady state analyses were performed using ABAQUS/Explicit, which models upward flow of soil layers. In the analysis of homogeneous layer it was found that the paths and the strain of soil particles were consistent with the result of the strain path method and that the ultimate resistance were reasonably evaluated. The cone penetration through different soil layers was also analyzed and that showed the transfer of cone resistance. The steady state ALE analysis could perform full penetration through the layered soils.

  • PDF