• Title/Summary/Keyword: Flow Cone Flow

Search Result 288, Processing Time 0.026 seconds

A numerical study on the chemically reacting flow at highly altitude (고 고도에서의 화학적 변화를 수반하는 기체 유동에 대한 수치해석적 연구)

  • 이진호;김현우;원성연
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.202-214
    • /
    • 2001
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study quasi one-dimensional nozzle flow and axisymmetric sphere-cone($5^{\circ}$) flow for the perfect gas, the equilibrium and the nonequilibrium chemically reacting hypersonic flow. The effective gamma(${ \tilde{\gamma}}$), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The influences of the various altitude(30km, 50km) at Mach number(15.0, 20.0) were investigated. The equilibrium shock position was located farthest downstream when compared with those of perfect gas in a quasi one-dimensional nozzle. The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock.

  • PDF

Numerical study on the Air Flow Characteristics inside a DPF with Diffuser Shape (확대관 형상에 따른 DPF 내의 유동특성 해석)

  • Rhim, Dong-Ryul;Lee, Sang-Up;Kim, Min-Jung;Kim, Soong-Kee;Kim, Seong-Kyu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.796-802
    • /
    • 2005
  • Numerical analysis has been conducted for improving air flow characteristics in the exhaust aftertreatment system of diesel-fueled passenger cars by changing axial length and cone shape of a DPF diffuser. The results of air velocity and static pressure distributions along with air flow uniformity results suggest that a diffuser shape with 2D or 3D function type is better for air flow patterns in front of a DPF.

  • PDF

A STUDY ON FLOW MIXING IMPROVEMENT OF SELECTIVE CATALYTIC REDUCTION USING GASEOUS REDUCTANT (기상 환원제를 사용하는 선택적 환원촉매에서 유동혼합 개선에 관한 연구)

  • Ko, S.C.;Lee, B.H.;Cho, S.H.;Lee, S.H.;Hong, S.T.;Lee, D.Y.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2010
  • Since emission regulations for vehicles have become more stringent, SCR technology has drawn a strong attention in order to reduce NOx emissions. Optimal design of a reductant injection nozzle and a multi-hole plate located between the cone and catalyst is critical in that the uniform distribution of reductant is necessary to maximize the NOx conversion efficiency and minimize the slip of reductant in SCR. In this work, an LPG fuel(C3H8 in vapor state) was used as a reductant for LPG vehicles. A Realizable k-$\varepsilon$ model is used for turbulence, and SCR body is defined as porous media with inertia and viscous resistances measured in this work. Effect of the number of nozzle holes on the flow mixing index was analyzed, which revealed that a four hole nozzle shows the best performance in terms of uniformity of flow. An installment of a multi-hole plate at the entrance of catalyst was evaluated with flow mixing index, uniformity of flow, and pressure drop. A multi-hole plate with gradual hole diameter change in three steps showed the best uniformity of flow within the conditions suggested in this work.

A Numerical Study on the Flow Characteristics in the Catalytic Muffler with Different Inlet and Outlet Configurations (입구 및 출구 형상 변화에 따른 촉매 삽입형 머플러 내부의 유동 해석)

  • An, Tae Hyun;Lee, Seung Yeop;Park, Yun Beom;Kim, Man Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.59-66
    • /
    • 2013
  • Lack of the space in many diesel vehicles make it difficult to design and install the catalytic muffler to reduce emissions. For this reason, inlet part of the catalytic muffler is made of L-type which has lower flow uniformity than conventional I-type, and catalytic muffler has complex internal structure by various insertions, which affect the flow uniformity and pressure drop of the systems. In this work, the flow characteristics such as flow uniformity and pressure drop have been numerically investigated by changing such various geometries as inlet shape, porosity, and outlet shape inside the muffler with the three-dimensional turbulent incompressible flow solver. Total 4 different cases are considered in order to find optimal configurations of the catalytic muffler in view of high flow uniformity and low pressure drop. The results show that Case 2 which has no induction cone and outlet perforated pipe has higher uniformity index and lower pressure drop than others considered in this work.

A Study on Numerical Modeling of Dynamic CPT using Particle Flow Code (입자결합모델을 이용한 동적콘관입시험(DCPT)의 수치해석 모델링에 관한 연구)

  • You, Kwang Ho;Lee, Chang Su;Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • PURPOSES : To solve problems in current compaction control DCPT(Dynamic Cone Penetrometer Test), highly correlated with various testing methods, simple, and economic is being applied. However, it、s hard to utilize DCPT results due to the few numerical analyses for DCPT have been performed and the lack of data accumulation. Therefore, this study tried to verify the validation of numerical modeling for DCPT by comparing and analyzing the results of numerical analyses with field tests. METHODS: The ground elastic modulus and PR(Penetration Rate) value were estimated by using PFC(Particle Flow Code) 3D program based on the discrete element method. Those values were compared and analyzed with the result of field tests. Also, back analysis was conducted to describe ground elastic modulus of field tests. RESULTS : Relative errors of PR value between the numerical analyses and field tests were calculated to be comparatively low. Also, the relationship between elastic modulus and PR value turned out to be similar. CONCLUSIONS : Numerical modeling of DCPT is considered to be suitable for describing field tests by carrying out numerical analysis using PFC 3D program.

Review on Analytical Solutions for Slump Flow of Cement Paste (시멘트 페이스트의 슬럼프 유동 모사를 위한 분석적 해의 검토)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.21-32
    • /
    • 2016
  • PURPOSES : In this paper, the analytical solutions suggested to simulate the behavior of rheological fluids were rigorously re-derived and investigated for fixed conditions to evaluate the applicability for the solutions on a mini-cone slump test of cement paste. The selected solutions with proper boundary conditions can be used as reference solutions to evaluate the performance of numerical simulation approaches, such as the discrete element method. METHODS : The slump, height, and spread radius for the given boundary and yield stress conditions that are determined by five different analytical solutions are compared. RESULTS : The analytical solution based on fluid mechanics for pure shear flow shows similar results to that for intermediate flow at low yield stresses. The fluid mechanics-based analytical solution resulted in a very similar trend to the geometry-based analytical solution. However, it showed a higher slump at high yield stress and lower slump at low yield stress ranges than the geometry-based analytical model. The analytical solution based on the mini-cone geometry was not significantly affected by the yield criteria, such as von Mises and Tresca. CONCLUSIONS : Even though differences among the analytical solutions in terms of slump and spread radius existed, the difference can be considered insignificant when the solutions were used as reference to evaluate the appropriateness of numerical approaches, such as the discrete element method.

A Computational Study of a Variable Sonic Ejector Flow (가변형 음속 이젝터 유동에 관한 수치해석적 연구)

  • Lee, Jun-Hee;Choi, Bo-Gyu;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.526-531
    • /
    • 2003
  • A cone cylinder is used to obtain variable operation conditions of a sonic ejector-diffuser system. The cone cylinder is movable to change the ejector area ratio, thus obtaining variable mass flow rates. The present study investigates the effects of ejector throat area ratio and operating pressure ratio on the entrainment of secondary stream. The numerical simulations are based on a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations. The ejector throat area is varied between 3.94 and 8.05, and the operating pressure ratio is changed from 3.0 to 9.0. The results show that the entrainment ratio and mass flux ratio become more dependent on the ejector throat area ratio, when the pressure operating ratio is low. The total pressure losses produced in the present ejector system increase with the operating pressure ratio and the ejector area ratio, but for a given operating pressure ratio, the losses are not significantly dependent on the ejector area ratio when it is larger than about 5.0.

  • PDF

The Effects of Injector and Swirler on the Flame Stability in a Model Combustor (모델연소기에서의 분사기와 선회기의 영향)

  • Park, Seung-Hun;Lee, Dong-Hun;Bae, Chung-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.9-21
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air, and the combustion stability in the gas turbine combustor design for the reduction of pollutant emissions and the increase of combustion efficiency. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. The effect of fuel injection nozzle was tested by adopting three different nozzles; a dual orifice fuel nozzle, a hollow cone nozzle and a solid cone nozzle. These tests were combined with the three different swirler geometries; a dual-stage swirler with 40$^{\circ}$ /-4 5$^{\circ}$ vanes and two single-stage swirlers with 40$^{\circ}$ vane angle having 12 and 16vanes, respectively. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-PtI3%Rh, R-type thermocouple which was 0.2mm thick. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the combination between the injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

Investigation on the Turbulent Flow Characteristics of a Gun-Type Gas Burner with the Different Shape of Baffle Plate (배플판 형상이 다른 Gun식 가스버너의 난류유동 특성치 고찰)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.475-485
    • /
    • 2004
  • This paper was studied to investigate and compare the effects of inclined baffle plate on the turbulent flow characteristics of a gun-type gas burner through X-Y plane and Y-Z plane respectively by using X-probe from hot-wire anemometer system. For this purpose, two burner models with a cone-type baffle plate and a flat-type one respectively were used. The fast jet flow spurted from slits plays a role such as an air-curtain because it encircles rotational flow by swirl vanes and drives mixed main flow to axial direction regardless of the inclination of baffle plate. The inclined baffle plate causes axial mean velocity component and turbulent intensities etc. to be greatly concentrated towards the central part of a burner, and its effect especially appears in the range of about X/R=1.0-2.0. Also, it gives much larger size to axial mean velocity component and turbulent intensities etc formed near the slits in the range of X/R=1.4103. Especially the inclined baffle plate shifts more the Reynolds shear stress uw to the central region of a burner(Y/R=${\pm}$0.75) than the flat-type one, moreover it develops more strongly than uv.

A Numerical Analysis of Flow Characteristics and Oil Separation Performance for Cyclone Oil Separator Designs (사이클론 오일분리 장치 형상변화에 따른 유동 및 오일분리 성능에 관한 해석적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Woo, Keun-Sup;Yoon, Yu-Bin;Park, Young-Joon;Lee, Dug-Young;Kim, Hyun-Chul;Na, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • A closed type crankcase ventilation system has been adopted to engines to prevent emission of blow-by gas to atmosphere. In the early closed type crankcase ventilation system, blow-by gas which contains engine lubricating oil is re-circulated into the intake system. The blow-by gas containing oil mist leads to increased harmful emissions and engine problems. To reduce loss of the engine oil, a highly-efficient oil separation device is required. Principle of a cyclone oil separator is to utilize centrifugal force in the separator and, therefore, oil separator designs depend on rotational flow which causes the centrifugal force. In this paper, flow characteristics and oil separation performances for cyclone type designs are calculated with CFD methodology. In the CFD model, oil particle was injected on a inlet surface with Rosin-Rammler distribution and uniform distribution. The major design parameters considered in the analysis model are inlet area, cone length and outlet depth of the oil separator. As results, reducing inlet area and increasing cone length increase oil separation performance. Changes in outlet depth could avoid interference between rotational flow and outlet flow in the cyclone oil separator.