• Title/Summary/Keyword: Flow Analysis Framework

Search Result 196, Processing Time 0.027 seconds

Aerodynamic Design of EAV Propeller using a Multi-Level Design Optimization Framework (다단 최적 설계 프레임워크를 활용한 전기추진 항공기 프로펠러 공력 최적 설계)

  • Kwon, Hyung-Il;Yi, Seul-Gi;Choi, Seongim;Kim, Keunbae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.173-184
    • /
    • 2013
  • A multi-level design optimization framework for aerodynamic design of rotary wing such as propeller and helicopter rotor blades is presented in this study. Strategy of the proposed framework is to enhance aerodynamic performance by sequentially applying the planform and sectional design optimization. In the first level of a planform design, we used a genetic algorithm and blade element momentum theory (BEMT) based on two-dimensional aerodynamic database to find optimal planform variables. After an initial planform design, local flow conditions of blade sections are analyzed using high-fidelity CFD methods. During the next level, a sectional design optimization is conducted using two dimensional Navier-Stokes analysis and a gradient based optimization algorithm. When optimal airfoil shape is determined at the several spanwise locations, a planform design is performed again. Through this iterative design process, not only an optimal flow condition but also an optimal shape of an EAV propeller blade is obtained. To validate the optimized propeller-blade design, it is tested in wind-tunnel facility with different flow conditions. An efficiency, which is slightly less than the expected improvement of 7% predicted by our proposed design framework but is still satisfactory to enhance the aerodynamic performance of EAV system.

A Framework Development for Sketched Data-Driven Building Information Model Creation to Support Efficient Space Configuration and Building Performance Analysis (효율적 공간 형상화 및 건물성능분석을 위한 스케치 정보 기반 BIM 모델 자동생성 프레임워크 개발)

  • Kong, ByungChan;Jeong, WoonSeong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.50-61
    • /
    • 2024
  • The market for compact houses is growing due to the demand for floor plans prioritizing user needs. However, clients often have difficulty communicating their spatial requirements to professionals including architects because they lack the means to provide evidence, such as spatial configurations or cost estimates. This research aims to create a framework that can translate sketched data-driven spatial requirements into 3D building components in BIM models to facilitate spatial understanding and provide building performance analysis to aid in budgeting in the early design phase. The research process includes developing a process model, implementing, and validating the framework. The process model describes the data flow within the framework and identifies the required functionality. Implementation involves creating systems and user interfaces to integrate various systems. The validation verifies that the framework can automatically convert sketched space requirements into walls, floors, and roofs in a BIM model. The framework can also automatically calculate material and energy costs based on the BIM model. The developed frame enables clients to efficiently create 3D building components based on the sketched data and facilitates users to understand the space and analyze the building performance through the created BIM models.

Regionalized Sensitivity Analysis of Extended TOPMODEL (확장 TOPMODEL의 영역화 민감도 분석)

  • Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.741-755
    • /
    • 1998
  • An extension of TOPMODEL was developed for rainfall-runoff simulation in agricultural watersheds equipped with tile drains. Tile drain functions are incorporated into the framework of TOPMODEL. Nine possible flow generation scenarios are suggested for tile drained watershed and applied in the modeling procedure. In the model development process, the traditional physically based storage approach and a new approach using a transfer function for the simulation of the flow in the unsaturated zone were compared. In order to provide better insight into the simulation process, a regionalized sensitivity analysis was performed to test the performance of the model and to compare the behavior of the transfer function to that of the simple storage related formulation. The results of analysis show good performance of the transfer function approach. Since the rainfall-runoff response pattern tends to vary seasonally, seven events distributed throughout a year were used in the sensitivity analysis to investigate the seasonal variation of the hydrologic characteristics. It is found that the sensitivity of each parameter described by the model are varied seasonally.

  • PDF

Constructing A Loop Tree in CTOC (CTOC에서 루프 트리 구성하기)

  • Kim, Ki-Tae;Kim, Je-Min;Yoo, Weong-Hee
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.197-206
    • /
    • 2008
  • The CTOC framework was implemented to efficiently perform analysis and optimization of the Java bytecode that is often being used lately. In order to analyze and optimize the bytecode from the CTOC, the eCFG was first generated. Due to the bytecode characteristics of difficult analysis, the existing bytecode was expanded to be suitable for control flow analysis, and the control flow graph was drawn. We called eCFG(extended Control Flow Graph). Furthermore, the eCFG was converted into the SSA Form for a static analysis. Many loops were found in the conversion program. The previous CTOC performed conversion directly into the SSA Form without processing the loops. However, processing the loops prior to the SSA Form conversion allows more efficient generation of the SSA Form. This paper examines the process of finding the loops prior to converting the eCFG into the SSA Form in order to efficiently process the loops, and exhibits the procedures for generating the loop tree.

A Method for Business Process Analysis by using Decision Tree (의사결정나무를 활용한 비즈니스 프로세스 분석)

  • Hur, Won-Chang;Bae, Hye-Rim;Kim, Seung;Jeong, Ki-Seong
    • The Journal of Society for e-Business Studies
    • /
    • v.13 no.3
    • /
    • pp.51-66
    • /
    • 2008
  • The Business Process Management System(BPMS) has received more attentions as companies increasingly realize the importance of business processes. However, traditional BPMS has focused mainly on correct modeling and exact automation of process flow, and paid little attention to the achievement of final goals of improving process efficiency and innovating processes. BPMS usually generates enormous amounts of log data during and after execution of processes, where numerous meaningful rules and patterns are hidden. In the present study we employ the data mining technique to find out useful knowledge from the complicated process log data. A data model and a system framework for process mining are provided to help understand the existing BPMS. Experiments with the simulated data demonstrate the effectiveness of the model and the framework.

  • PDF

Database Schema Design for Integrated Missile Design and Optimization (유도무기 통합최적설계를 위한 데이터베이스 설계 연구)

  • Lee, Jae-Woo;Lee, Seung-Jin;Choi, Seok-Min;Cho, Guk-Hyun;Kim, Kwang-Sik;Lee, Jeong-Oog;Jung, Karp-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.563-569
    • /
    • 2008
  • In this paper, the missile database system for the multidisciplinary design and optimization framework has been designed and investigated. The requirements of the missiles database are analyzed and the database design concept has been defined first. The data flow among the analysis disciplines is investigated and the Entity-Relation diagram is constructed to develop the database table and to define the database schema. The developed database system is integrated into the missile design framework to perform the store, search and management of the design data during the design and analysis of the missile development, hence the efficiency and validity of the database designed in this study has been demonstrated.

Economic Impacts of Transportation Investment on Regional Growth: Evidence from a Computable General Equilibrium Model on Japan's Cross-Prefectural-Border Region

  • Thi Thu Trang, HA;Hiroyuki, SHIBUSAWA
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.10 no.2
    • /
    • pp.183-193
    • /
    • 2023
  • This paper proposes and examines the economic impact of infrastructure improvement on the San-En-Nanshin region in the Chubu area of Japan. We develop a single transportation computable general equilibrium (CGE) model for each subregion within the San-En-Nanshin region. The explicit modeling of the transportation infrastructure is defined based on interregional commuting flows and business trips, considering the spatial structure of the San-En-Nanshin economy. A CGE model is integrated with an interregional transportation network model to enhance the framework's potential for understanding the infrastructure's role in regional development. To evaluate the economic impact of transportation improvement, we analyze the interrelationship between travel time savings and regional output and income. The economic impact analysis under the CGE framework reveals how transportation facilities and systems affect firm and household behavior and therefore induce changes in the production and consumption of commodities and transportation services. The proposed theoretical model was tested by using data from the 2005 IO tables of each subregion and the 2006 transport flow dataset issued by the Ministry of Land, Infrastructure, Transport, and Tourism in Japan. As a result, the paper confirms the positive effect of transportation investment on the total output and income of the studied region. Specifically, we found that while economic benefits typically appear in urban areas, rural areas can still potentially benefit from transportation improvement projects.

Development of the Analytic Framework for Dialogic Argumentation Using the TAP and a Diagram in the Context of Learning the Circular Motion (원운동 학습 상황에서 Toulmin의 논의구조(TAP)와 다이어그램을 이용한 대화적 논의과정 분석틀 개발)

  • Shin, Ho Sim;Kim, Hyun-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.5
    • /
    • pp.1007-1026
    • /
    • 2012
  • The purpose of this study was to develop analytic framework for dialogic argumentation to show the context and flow visualizing interactions of argumentation, to be able to present quality of argumentation specifically. For this, we formulated a method of the argumentation diagram using feature of diagram simple and structurally visualizing interrelation between argument components, and then quantified quality of argumentation to argument level score on this basis. We have developed the learning material for argumentation about a vertical circular motion and used the obtained translations from applying it in developing the framework. We chose argument statements among full transcript and then coded as Toulmin's argument components, and these codes was effectively arranged and linked to show argumentation diagram. Results by argumentation diagram could be useful understanding of interactive argumentation context and the flow and present frequency, the combination of argument elements, rough qualitative level of argumentation. To quantify argumentation quality, we gave different scores to different link lines reflecting indication of argumentation quality like that diversity of argument component, justification, presence or absence of rebuttals. The process of identification of argument level is very simple, qualitative level of argumentation represented as concrete score could present various and concrete argument level. Developed analytic framework might contribute to argumentation research field, because it can present effectively dialogic argumentation result. Also, various analysis cases might guide designing an effective argumentation practice and circular motion learning.

Collapse analysis of shallow tunnel subjected to seepage in layered soils considering joined effects of settlement and dilation

  • Yang, X.L.;Zhang, R.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.217-235
    • /
    • 2017
  • The stability prediction of shallow buried tunnels is one of the most difficult tasks in civil engineering. The aim of this work is to predict the state of collapse in shallow tunnel in layered soils by employing non-associated flow rule and nonlinear failure criterion within the framework of upper bound theorem. Particular emphasis is first given to consider the effects of dilation on the collapse mechanism of shallow tunnel. Furthermore, the seepage forces and surface settlement are considered to analyze the influence of different dilation coefficients on the collapse shape. Two different curve functions which describe two different soil layers are obtained by virtual work equations under the variational principle. The distinct characteristics of falling blocks up and down the water level are discussed in the present work. According to the numerical results, the potential collapse range decreases with the increase of the dilation coefficient. In layered soils, both of the single layer's dilation coefficient and two layers' dilation coefficients increase, the range of the potential collapse block reduces.

The Development of Power Flow Program using Java Language (자바를 이용한 조류 계산 프로그램의 개발)

  • Kwak, Sang-Un;Kim, Yang-Il;Gim, Jae-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.111-113
    • /
    • 2005
  • In this paper a computer program has been developed using IT technologies for load flow analysis. The program is written in the Java language for the platform and operating system independence. The software technique, such as Standard Widget Toolkit (SWT), Graphical Editing Framework (GEF), and Java web start, are used for the program. The program also has Graphical User Interface (GUI) to enable users to construct power system displays through simple mouse clicks and map directly into visual power system elements on the screen. The input data of the elements of power system can be entered on the screen. The results of the program cail be checked on the screen.

  • PDF