• Title/Summary/Keyword: Floor fixed

Search Result 105, Processing Time 0.021 seconds

Multi-level Building Layout With Dimension Constraints On Departments (형태제약을 가지는 부서의 다층빌딩 설비배치)

  • Chae-Bogk Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.4
    • /
    • pp.42-49
    • /
    • 2003
  • The branch and bound techniques based on cut tree and eigenvector have been Introduced in the literature [1, 2, 3, 6, 9, 12]. These techniques are used as a basis to allocate departments to floors and then to fit departments with unchangeable dimensions into floors. Grouping algorithms to allocate departments to each floor are developed and branch and bound forms the basis of optimizing using the criteria of rectilinear distance. The proposed branch and bound technique, in theory, will provide the optimal solution on two dimensional layout. If the runs are time and/or node limited, the proposed method is a strong heuristic The technique is made further practical by the fact that the solution is constrained such that the rectangular shape dimensions length and width are fixed and a perfect fit is generated if a fit is possible. Computational results obtained by cut tree-based algorithm and eigenvector-based algorithm are shown when the number of floors are two or three and there is an elevator.

A Study on characteristics of vibration of a floating slab track according to change of stiffness of track (궤도하부강성 변화에 따른 방진슬라브 궤도의 진동특성 연구)

  • 강윤석;양신추;오지택
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.572-579
    • /
    • 1998
  • In this paper, an analytical model for analyzing the interaction between train and floating slab track is presented. Train is modelled by 4-lumped masses system which are composed of a carbody supported by secondary suspension, a bogie frame supported by primary suspension, and two wheelsets supported by nonlinear Hertzian springs. In the track model, rail is considered to have a distributed mass and to be supported discretely at sleepers above ballast on slab. The slab supported by discrete isolators put on fixed floor is modelled by finite beam elements. Numerical analyses are carried out to examine anti-vibration effect of the GERB slab track which is same type laid in Puchon station on the subway No. 7 Line.

  • PDF

An Algorithm for Automatic Guided Vehicle Scheduling Problems (자동유도운반차 (Automatic Guided Vehicle) 스케쥴링 해법)

  • Park, Yang-Byeong;Jeon, Deok-Bin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.13 no.1
    • /
    • pp.11-24
    • /
    • 1987
  • Automatic Guided Vehicle Systems feature battery powered driverless vehicles with programming capabilities for path selection and positoning. Vehicles serve the machines in shop, following a guide path system installed on the shop floor. The basic problem in the system is to determine a fixed set of vehicle routes of minimal total distance(time) while keeping capacity and distance(time) constraints. In this paper, a heuristic algorithm is presented for scheduling the automatic guided vehicles. The algorithm routes the machines based on their distances and polor coordinate angles, taking into account the structural feature of the system. Computational experiments are performed on several test problems in order to evaluate the proposed algorithm. Finally, a framework for dealing with the case where supplies from the machines are probabilistic is described.

  • PDF

Human Body Orientation Tracking System Using Inertial and Magnetic Sensors (관성 센서와 지자계 센서를 사용한 인체 방향 추적 시스템)

  • Choi, H.R.;Ryu, M.H.;Yang, Y.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.118-126
    • /
    • 2011
  • This study proposes a human body orientation tracking system by inertial and earth magnetic sensors. These sensors were fused by indirect Kalman filter. The proposed tracking system was configured and the filter was implemented. The tracking performance was evaluated with static and dynamic tests. In static test, the sensor was fixed on the floor while its static characteristics was analyzed. In dynamic test, the sensor was held and moved manually for 30 seconds. The dynamic test included x, y, z axis rotations, and elbow flection/extension motions that mimic drinking. For these dynamic motions, the tracking angle error was under $4.1^{\circ}$ on average. The proposed tracking method is expected to be useful for various human body motion analysis.

A Study on Architectural Space of Mt. Gyeryong Ceramic Art Village (계룡산 도예촌 건축공간구조에 관한 연구)

  • Song, Heejoung;Lee, Wangkee
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.3 no.2
    • /
    • pp.1-12
    • /
    • 2001
  • This study is about the residential district structure of Gyeryong ceramic art village in Gyeryong ceramic art village is a residential district for potters who succeed to and develop Gyeryong ceramic art. The external appearance of Gyeryong ceramic art village seems like being fixed and simplified. The creative space is either detached or attached to a living room. The relation between inner and outer space is that is directly connected to a garden. In the characters of major spaces, the formation of a workshop is the most important part of a house. And, an exhibition equipment and an oven are connected to the workshop. According to the study, a house, which is designed without an architect's help is simple and has a different form from a house designed by an architect.

  • PDF

Effects of Soil Nonlinearity Characteristics on the Seismic Response of KNGRStructures (지반의 비선형 특성이 차세대원전 구조물의 지진응답에 미치는 영향)

  • 장영선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.137-146
    • /
    • 1999
  • The SSI(Soil-Structure Interaction) analyses are being performed for the KNGR(Korean Next Generation Reactor) design because the KNGR is developed as a standard nuclear power plant concept enveloping various soil conditions. the SASSI program which adopts the flexible volume method is used for the SSI analyses. The soil curves used in the three dimensional SSI analyses of KNGR Nuclear Island(NI) structures are based on the upper bound shear modulus curve and lower bound damping degradation on SSI response the average shear modulus curve with average damping curve was used for two soil cases. This study presents the results of the variances by using different soil nonlinearity parameters based on the paametric SSI analyses. The results include the maximum member forces(shear and axial force) at the base of the NI structures and the 5% damping Floor Response Spectra (FRS) at some representative locations at the top of the NI superstructures. They are also compared together with the enveloped SSI results for eight soil cases and fixed-base analysis for rock case by using two control motions.

  • PDF

A Study on Area Planning of Air Conditioning Room for Hospital Design Focused on System (체계중심병원설계를 위한 공조실 면적 계획에 관한 연구)

  • Kim, Eun Seok;Yang, Nae Won
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.25 no.4
    • /
    • pp.27-35
    • /
    • 2019
  • Purpose: As the improvement in quality of medical environment and the spatial consideration for the prevention of infection in the hospital have become increasingly important in the recent years, specific and practical planning for air conditioning room's area has become a major issue accordingly. However, the air conditioning room tends to be discussed focusing on technical factors such as air conditioning systems that are irrelevant to building plans, while discussions of most departments related to the medical functions have actively taken placed. Therefore, this study aims to investigate the factors influencing the planning for the air conditioning room area, and through subsequent analysis of the area of the air conditioning room, to propose a way to improve effective planning for the air conditioning room area. Methods: This study examines the case hospitals that fall into two types: each floor supply system and concentrated supply system, and compares and analyzes the air conditioning room area-related factors and the characteristics of changes in the interior of air conditioning room before and after remodeling through air conditioning floor plan of those case hospitals. Results: The air conditioning room can be classified into the net area of the functional space such as duct passages, and the public area such as aisle space, and of those the public area is an important factor in calculating the area of the air conditioning room. The public area of the air-conditioning room should not be planned considering only the spaces for mobile passage or maintenance activities, but should be planned taking into account internal changes such as expansion and replacement of equipment in the future from the beginning. Implications: When planning a medical facility, it is used as basic data for the planning of the air conditioning room area, which is a significant fixed factor in the initial setting.

Experimental Study on the Small-Scale Rotor Hover Performance in Partial Ground Conditions (부분적 지면조건 하에서의 소형 로터 블레이드 제자리 비행 성능에 대한 실험적 연구)

  • Seo, Jin-Woo;Lee, Byoung-Eon;Kang, Beom-Soo;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.12-21
    • /
    • 2010
  • This paper focuses on the hover performance experiment of a small-scale single rotor in partial ground conditions. In this study, small-scale rotor blade rotating device and floor panel are used to include partial ground effect. Thrust and torque were measured with varying collective pitch angles at fixed rotor rotating speed. The overlap distance between rotor and ground is d, the rotor diameter is D. It was shown that the ground effects have little effect on the rotor performance until d/D is 0.25. Four blade rotor has more increased thrust and more reduced power than those of two blade rotor because of stronger ground effect. In addition, it was also found that the thrust increases as a collective pitch angle become smaller. Based on these experiment results, we deduced new empirical equation considered blade number and partial ground effect.

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

Seismic response variation of multistory base-isolated buildings applying lead rubber bearings

  • Islam, A.B.M. Saiful;Al-Kutti, Walid A.
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.495-504
    • /
    • 2018
  • The possibility of earthquakes in vulnerable regions indicates that efficient technique is required for seismic protection of buildings. During the recent decades, the concept is moving towards the insertion of base isolation on seismic prone buildings. So, investigation of structural behavior is a burning topic for buildings to be isolated in base level by bearing device. This study deals with the incorporation of base isolation system and focuses the changes of structural responses for different types of Lead Rubber Bearing (LRB) isolators. A number of sixteen model buildings have been simulated selecting twelve types of bearing systems as well as conventional fixed-base (FB) scheme. The superstructures of the high-rise buildings are represented by finite element assemblage adopting multi-degree of freedoms. Static and dynamic analyses are carried out for FB and base isolated (BI) buildings. The dynamic analysis in finite element package has been performed by the nonlinear time history analysis (THA) based on the site-specific seismic excitation and compared employing eminent earthquakes. The influence of the model type and the alteration in superstructure behavior of the isolated buildings have been duly assessed. The results of the 3D multistory structures show that the lateral forces, displacement, inertia and story accelerations of the superstructure of the seismic prone buildings are significantly reduced due to bearing insertion. The nonlinear dynamic analysis shows 12 to 40% lessening in base shear when LRB is incorporated leading to substantial allowance of horizontal displacement. It is revealed that the LRB isolators might be potential options to diminish the respective floor accelerations, inertia, displacements and base shear whatever the condition coincides. The isolators with lower force intercept but higher isolation period is found to be better for decreasing base shear, floor acceleration and inertia force leading to reduction of structural and non-structural damage. However, LRB with lower isolator period seems to be more effective in dropping displacement at bearing interface aimed at reducing horizontal shift of building structure.