• Title/Summary/Keyword: Flooding duration

Search Result 51, Processing Time 0.028 seconds

Influence of Moisture, pH, Depth of Burial and Submerged Conditions on Seed Germination and Seedling Emergence of Major Weed Species in Coconut Plantations of Sri Lanka

  • Senarathne, S.H.S.;Sangakkara, U.R.
    • Korean Journal of Weed Science
    • /
    • v.30 no.3
    • /
    • pp.206-214
    • /
    • 2010
  • The laboratory and green house studies evaluated the effect of three different environmental factors on the seed germination, seedling emergence and survival of four major weed species in coconut plantations, Mimosa pudica, Ureana lobata, Panicum maximum and Pennisetum polystachyon. Germination percentage of all the weed species was significantly reduced with increasing soil moisture stress, no germination was observed at -0.9 MPa. Germination of both grass seeds ranged from 8% to 25% and 10% to 45% as moisture stress decreased from -0.4 MPa to 0 MPa, respectively. In contrast, seeds of M. pudica, and U. lobata were moderately tolerant to soil moisture stress and best adapted to moist environment. All the weed species seeds germinated over a wide range of soil pH values with the highest germination occurring at pH 6. In all the species, seedling emergence was declined rapidly with increasing depth with the exception of U. lobata. Seedling emergence significantly declined when the duration of flooding was three days or longer in dicotyledonous weed species and two days or longer in monocotyledonous weeds. This study illustrates the adaptability of these weeds to different environmental conditions which would enable the development of management strategies to reduce their populations below economic threshold levels in coconut plantations.

Effect of Water Management after Fertilizer Application on Fate and Efficiency of Applied Nitrogen (시식 후 물관리 방법이 실소의 동태 및 이용효율에 미치는 영향)

  • 이변우;명을재;최관호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.157-166
    • /
    • 1995
  • The fate and use efficiency of applied nitrogen were evaluated in a pot experiment with different fertilizers and water management practices during 30days after fertilizer application. N-P-K compound fertilizers, 13-10-1l(F-l) for upland Crop use and 15-10-10(F-3) for rice Crop use, and mixed fertilizer, 21-17-17(F-2) for basal dressing in rice were used. Fertilizers corresponding to 1.8g N were mixed thoroughly with the whole volume of sandy loam soil in a pot. The pots were flooded upto 3cm above soil surface for O(0dF), 10(10dF), 20(20dF), and 30(30dF) days after fertilizer application and all the treatments were flooded continuously from 30 days after fertilizer application. During the flooding period water percolation rate was adjusted to 2.5mm/day. Rice seedlings were transplanted 40 days after fertilizer application. The pH of infiltrated water increased with increasing duration of flooding. The pH of F-2 was higher than those of F-1 and F-3 between which there were no differences. The applied nitrogen remained 23% in F-1, 29% in F-2, and 29.1 % in F-3, and 45.0% in 0dF, 26.6% in 10dF, 24.8% in 20dF, and 20.3% in 30dF as inorganic nitrogen at 63 days after fertilizer application. Nitrogen losses by leaching amounted to 51.3%, 32.1% and 48.1% of applied nitrogen in F-1, F-2 and F-3, respectively. Nitrogen leaching losses increased with increasing duration of flood- ing, amounting to 25.7%, 29.8%, 32.7%, and 35.8% in 0dF, 10dF, 20dF and 30dF, respectively. Gaseous loss of applied nitrogen was greatest in F-2, followed by F-1 and F-3. Total loss of nitrogen due to gaseous volatilization and leaching was greatest in F -1, followed by F -2 and F-3, and were greater in the treatments with longer flooding after fertilizer application. Nitrogen recovery by rice shoot until 72 days after transplanting were 23.2%, 24.7% and 27.4% of applied nitrogen in F-1, F-2 and F-3, respectively and 34.1%, 25.5%, 21.1%, and 21.2% in 0dF, 10dF, 20dF and 30dF, respectively.

  • PDF

Assessment of the Non-point Source Pollution Control Strategies for Water Quality Improvement in the Haeban Stream of West Nakdong River Watershed (서낙동강 유역 해반천의 수질 개선을 위한 비점오염관리대책 효과 분석)

  • Yejin Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • In this study, a HSPF model was developed to simulate runoff and water quality in the Haebancheon watershed, which has a high land area ratio and population density among the West Nakdong River watersheds. Various non-point source pollution control strategies were applied, and the reduction in pollutant loads and the exceedance rate of water quality standards were analyzed. The scenarios included basic road cleaning for reducing pollutant loads, runoff reduction measures considering extensive low-impact development techniques, and inflow reduction measures to mitigate non-point source pollution entering the river. In the first step, practical conditions such as the number of vehicles for road cleaning in Kimhae City were considered, while for the second and third steps, it was assumed that 50% of the applicable land use area was used to be applicable for the LID techniques. As a result of applying all three measures, it was analyzed that the BOD pollutant load could be reduced by 58.28%, T-N by 58.49%, and T-P by 51.56%. Furthermore, the 60th percentile of water quality measurements accumulated over 5 years was set as the target water quality, and a flow-duration curve was constructed. The exceedance rate of the flow-duration curve before and after applying non-point source pollution reduction measures was analyzed. As a result, for BOD, the exceedance rate decreased from 41.57% before applying the measures to 16.32% after, showing a 25.25% reduction in the exceedance rate. For T-N, the exceedance rate decreased significantly from 40.31% before the measures to 22.84% after, and for T-P, it decreased significantly from 62.43% to 27.22%.

Effect of Waterlogging during Fruit Enlargement on the Quality and Yield of Oriental Melon (Cucumis melo L. var. Makuwa Mak.) (과실비대기 담수처리가 참회의 품질 및 수량에 미치는 영향)

  • 신용섭;연일권;최진국;최성국;최부술
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.141-145
    • /
    • 2000
  • This experiment was carried out to investigate the influence of flooding on the quality and yield of an oriental melon. Waterlogging for four periods, 0(not flooded), 5, 10 or 15h, were applied to 30cm depth from the soil surface. The soluble solids content of fruit flesh measured at 7 days after waterlogging was 12.6 Brix in not-flooded plot, but it decreased by 4.7-5.6 Brix in plots flooded 5, 10 or 15h, respectively. Difference in fruit hardness between the no-flooded and 5h-flooded plots was not observed, while a significant decrease in fruit hardness was observed in 10 or 15 h-flooded plots at 7 days after waterlogging. Decrease in fruit hardness in all plots except control plot was observed at 13 days after waterlogging. The percent decayed fruits at 7 days after waterlogging was not observed, but at 13 days after waterlogging it gradually increased as duration of flooding increased. The incidence of downy or powdery mildews increased is significantly in plots flooded for 5, 10 or 15h as compared to the not-flooded control. However, population of cotton caterpillar decreased in the flooded plots. Marketable fruits yield per 10a was 616.2kg in no-flooded plot, but it decreased by 33%, 45% and 66%, respectively, in plots flooded for 5, 10 or 15h. The waterlogging during fruit enlargement stage significantly deteriorated fruit quality and decreased marketable fruit yield.

  • PDF

Development of a Numerical Model to Analyze the Formation and Development Process of River Mouth Bars (하구사주의 생성 및 발달을 해석하기 위한 수치모델의 개발)

  • Kim, Yeon-Joong;Woo, Joung-Woon;Yoon, Jong-Sung;Kim, Myoung-Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.308-320
    • /
    • 2021
  • An integrated sediment management approach that includes the recovery of the amount of declined sediment supply is effective as a fundamental solution to coastal erosion. During planning, it is essential to analyze the transfer mechanism of the sediments generated from estuaries (the junction between a river and sea) to assess the amount and rate of sediment discharge (from the river to sea) supplied back to the coast. Although numerical models that interpret the tidal sand bar flushing process during flooding have been studied, thus far, there has been no study focusing on the formation and development processes of tidal sand bars. Therefore, this study aims to construct wave deformation, flow regime calculation, and topographic change analysis models to assess the amount of recovered sediment discharge and reproduce the tidal sand bar formation process through numerical analysis for integrated littoral drift management. The tidal sand bar formation process was simulated, and the wave energy and duration of action concepts were implemented to predict the long-term littoral movement. The river flux and wave conditions during winter when tidal sand bars dominantly develop were considered as the external force conditions required for calculation. The initial condition of the topographic data directly after the Maeupcheon tidal sand bar flushing during flooding was set as the initial topography. Consequently, the tidal sand bar formation and development due to nearshore currents dependent on the incident wave direction were reproduced. Approximately 66 h after the initial topography, a sand bar formation was observed at the Maengbang estuary.

Real-time flood prediction applying random forest regression model in urban areas (랜덤포레스트 회귀모형을 적용한 도시지역에서의 실시간 침수 예측)

  • Kim, Hyun Il;Lee, Yeon Su;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1119-1130
    • /
    • 2021
  • Urban flooding caused by localized heavy rainfall with unstable climate is constantly occurring, but a system that can predict spatial flood information with weather forecast has not been prepared yet. The worst flood situation in urban area can be occurred with difficulties of structural measures such as river levees, discharge capacity of urban sewage, storage basin of storm water, and pump facilities. However, identifying in advance the spatial flood information can have a decisive effect on minimizing flood damage. Therefore, this study presents a methodology that can predict the urban flood map in real-time by using rainfall data of the Korea Meteorological Administration (KMA), the results of two-dimensional flood analysis and random forest (RF) regression model. The Ujeong district in Ulsan metropolitan city, which the flood is frequently occurred, was selected for the study area. The RF regression model predicted the flood map corresponding to the 50 mm, 80 mm, and 110 mm rainfall events with 6-hours duration. And, the predicted results showed 63%, 80%, and 67% goodness of fit compared to the results of two-dimensional flood analysis model. It is judged that the suggested results of this study can be utilized as basic data for evacuation and response to urban flooding that occurs suddenly.

Prediction MOdels for Channel Bed Evolution Due to Short Term Floods (단기간의 홍수에 의한 하상변동의 예측모형)

  • Pyo, Yeong-Pyeong;Sin, Cheol-Sik;Bae, Yeol-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.597-610
    • /
    • 1997
  • One-dimensional numerical models using finite difference methods for unsteady sediment transport on alluvial river channel are developed. The Preissmann implicit scheme and the Lax-Wendroff two-step explicit scheme with the Method of Characteristics for water motion and a forward time centered space explicit scheme for sediment motion are developed to simulate the sediment transport rate and the variation of channel bed level. The program correctness of each model is successfully verified using volume conservation tests. The sensitivity studies show that higher peak stage level, steeper channel slope and longer flooding duration produce more channel bed erosion. and median grain size, $D_{50}=0.4mm$ give maximum volume loss in this study. Finally, the numerical models are found to produce reasonable results from the various sensitivity tests which reveal that the numerical models have properly responded to the changes of each model parameter.

  • PDF

Analysis of Inundation Causes in Urban Area based on Application of Prevention Performance Objectives (도시유역에서의 방재성능목표 적용과 침수원인 분석)

  • kim, Jong-Sub
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • The purpose of this study is to analyze quantitatively the inundation causes by applying the prevention of performance objectives using the urban storm water runoff model XP-SWMM. The model was built by using DTM and storm sewer-network with the storm sewer and geo-data of the study area as input-data to assess the current performance of prevention. An analysis of the causes of the inundation by the frequency and the rainfall-duration. As a result, lack of pipe capacity due to flooding, as well as inundation heavier that the backwater rainfall occurs due to the rise of water level of outside. For solve the inundation damage, It is necessary to improvement pipe of capacity lack and installation of a flood control channel.

Lightweight Multicast Routing Based on Stable Core for MANETs

  • Al-Hemyari, Abdulmalek;Ismail, Mahamod;Hassan, Rosilah;Saeed, Sabri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4411-4431
    • /
    • 2014
  • Mobile ad hoc networks (MANETs) have recently gained increased interest due to the widespread use of smart mobile devices. Group communication applications, serving for better cooperation between subsets of business members, become more significant in the context of MANETs. Multicast routing mechanisms are very useful communication techniques for such group-oriented applications. This paper deals with multicast routing problems in terms of stability and scalability, using the concept of stable core. We propose LMRSC (Lightweight Multicast Routing Based on Stable Core), a lightweight multicast routing technique for MANETs, in order to avoid periodic flooding of the source messages throughout the network, and to increase the duration of multicast routes. LMRSC establishes and maintains mesh architecture for each multicast group member by dividing the network into several zones, where each zone elects the most stable node as its core. Node residual energy and node velocity are used to calculate the node stability factor. The proposed algorithm is simulated by using NS-2 simulation, and is compared with other multicast routing mechanisms: ODMRP and PUMA. Packet delivery ratio, multicast route lifetime, and control packet overhead are used as performance metrics. These metrics are measured by gradual increase of the node mobility, the number of sources, the group size and the number of groups. The simulation performance results indicate that the proposed algorithm outperforms other mechanisms in terms of routes stability and network density.

Environmental Factors and Phragmites Distribution at Various Habitats in Eulsukdo Ecological Park (을숙도 생태공원내 서식지별 환경요인과 갈대분포 특성)

  • Chung, Yong Hyun;Sung, Kijune;Kang, Daeseok;Lee, Suk Mo;Park, Soyoung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.3
    • /
    • pp.50-61
    • /
    • 2008
  • Environmental factors and phragmites growth properties at various habitats in Eulsukdo ecological park were investigated to understand major factors affecting phragmites distribution in constructed wetlands. Although phragmites is very important species in wetland ecosystem, it should be controlled to prevent excessive expansion within the restricted park area. The results showed that phragmites dominant sites have the highest LAI among other emerged plants habitats and could adversely affect for waders habitats. Phragmites were also found at the areas with wide ranges of water-depth than other plants, and showed phragmites could be favored for occupying the newly constructed wetlands like Eulsukdo ecological park. The results showed difference in soil redox potential between phragmites dominant and non-dominant sites. Because soil redox potential is affected by wetland hydrology like flooding duration, control of wetland hydrology should be considered for creation and management of constructed wetlands. The results also showed that differences in soil cation exchange capacity, soil salinity, soil organic matter content and site inclination between phragmites dominant and non-dominant sites as well as brackish and freshwater areas. Those abiotic factors can be important considerations for the sustainable wetland management especially for the phragmitest managements in the ecological park.