• Title/Summary/Keyword: Flooded area

Search Result 169, Processing Time 0.029 seconds

Ecological Studies on Lettuce Drop Disease Occurring under Controlled Cultivation Conditions in Drained Paddy Fields (답리작 상치 시설재배지에서의 균핵병 발생생태에 관한 연구)

  • Shin Dong Bum;Lee Joon Tak
    • Korean Journal Plant Pathology
    • /
    • v.3 no.4
    • /
    • pp.252-260
    • /
    • 1987
  • Incidence of lettuce drop was observed throughout the growing season in the vinylhouse at the southern part of Korea, Kimhai. Occurrence of this disease was especially severe at the seedling stage. Number of sclerotia in surface soil $(30\times30\times5cm)$ was 22.0 at the seedling stage, and 5.3 at harvest in the infected area. Temperature for mycelial growth ranged from 5 to $30^{\circ}C$ with optimum temperature at $25^{\circ}C$. Sclerotia were formed fewer at low temperature, but their size was larger resulting in heavier dry weight than that at high temperature. The apothecia were formed from the sclerotia that were buried in March, April and September upto 3cm soil depth, but formed from those buried only 1 em soil depth in October. Sclerotia buried in June and December did not form apothecia regardless of soil depth by 90 days. The sclerotia buried in the 5cm of soil depth did not form apothecia. Sclerotia that were embedded in wet or flooded soil at $25^{\circ}C$ and $30^{\circ}C$ for 5 weeks lost their viability. Infection of lettuce was possible with mycelia originated from sclerotia on autoclaved lettuce plant fragments. The fungus was pathogenic on 25 plant species in 8 families in artificial inoculation tests. Lettuce seedlings appeared to be infected by airborne ascospore originated from sclerotia on crops and weeds around paddy fields, because sclerotia existing in soil might perish under long flood conditions during rice cultivation.

  • PDF

Climate Change Impact Analysis of Urban Inundation in Seoul Using High-Resolution Climate Change Scenario (고해상도 기후시나리오를 이용한 서울지역 배수시스템의 기후변화 영향 분석)

  • Lee, Moon-Hwan;Kim, Jae-Pyo;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.345-355
    • /
    • 2015
  • Climate change impact on urban drainage system are analyzed in Seoul by using high-resolution climate change scenario comparing 2000s (1971~2000) with 2020s (2011~2040), 2050s (2041~2070) and 2080s (2071~2100). The historical hourly observed rainfall data were collected from KMA and the climate change scenario-based hourly rainfall data were produced by RegCM3 and Sub-BATS scheme in this study. The spatial resolution obtained from dynamic downscaling was $5{\times}5km$. The comparison of probability rainfalls between 2000s and 2080s showed that the change rates are ranged on 28~54%. In particular, the increase rates of probability rainfall were significant on 3, 6 and 24-hour rain durations. XP-SWMM model was used for analyzing the climate change impacts on urban drainage system. As the result, due to the increase of rainfall intensities, the inundated areas as a function of number of flooded manhole and overflow amounts were increasing rapidly for the 3 future periods in the selected Gongneung 1, Seocho 2, Sinrim 4 drainage systems. It can be concluded that the current drainage systems on the selected study area are vulnerable to climate change and require some reasonable climate change adaptation strategies.

A by-pass rainwater penetration sewer system for urban flooding mitigation (도시침수 저감을 위한 by-pass 빗물침투성 우수관거)

  • Lee, Bum-Sub;Ko, Keon-Ho;Kang, Ho-Yeong;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.799-807
    • /
    • 2016
  • The aim of this study is to determine and propose the by-pass rainwater sewer system in order to reduce the urban floodplain from the locality heavy rain every year during the dry season and the sinkholes in the city as well as the shortage of groundwaters due to extreme hot weather condition and urban heat island phenomenon. Heavy rain occurs more than the years of heavy rainfall probability, comparison between the place where uses the existing pipes and connect the sewer system with by-pass rain permeability and without expanding sewer pipe replacement at intersection of Gangnam station 3.07 ha at Gangnam-gu, Seoul Metropolitan area, it indicates that average of 27 million KRW (44%) maintenance cost savings and maintain existing sewer system without any other countermeasures. For the city flooded reduction, by-pass rainwater permeable rainwater pipe multiplying the probability the number of years during summer season and increase the water flow capacity during spring and fall when a small amount of rain that, it also contribute to the total amount of underground water secured through the by-pass penetration.

Measure Improvement on Vulnerable Area based on Climate Change Impact on Agriculture Infrastructure (기후변화에 따른 농업생산기반시설 영향분석을 통한 정책추진 방안 연구)

  • Jeong, Kyung-Hun;Song, Suk-Ho;Jung, Hyoung-Mo;Oh, Seung-Heon;Kim, Soo-Jin;Lim, Se-Yun;Joo, Dong-Hyuk;Hwang, Syewoon;Jang, Min-Won;Bae, Seung-Jong;Yoo, Seung-Hwan
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.4
    • /
    • pp.81-91
    • /
    • 2020
  • This study was conducted to analyse climate change impact on agriculture infrastructure and propose improved measures on vulnerable areas. Recently, Climate change has resulted in damaging effects on agricultural fields through increases in drought intensity and flood risk. It is expected that this impact will increase over time. This study shows that Gyeong-gi and Chung-nam provinces are affected by drought and Gyeong-buk and Gyeong-nam provinces are affected by heavy rain. However, there are also regional variations within each province. Agricultural infrastructure affected by drought may also be affected by heavy rain. Increased damages on the infrastructure due to increased extreme weather events require preventive measures especially in vulnerable areas. In order to minimize the damage by climate change, we need to introduce a reform in the system which selects project region by analysing climate change impacts. Furthermore, impact assessment of climate change from projects such as 'water supply diversification', 'flooded farmland improvement', and 'irrigation facility reinforcement' also need to be adopted to improve the measures. The results of this study are expected to provide a foundation for establishing measures on coping with climate change in the agricultural sector.

Application of dual drainage system model for inundation analysis of complex watershed (복합유역의 침수해석을 위한 이중배수체계 유출모형의 적용)

  • Lee, Jaejoon;Kwak, Changjae;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • The importance of the dual drainage system model has increased as the urban flood damage has increased due to the increase of local storm due to climate change. The dual drainage model is a model for more accurately expressing the phenomena of surface flow and conduit flow. Surface runoff and pipe runoff are analyzed through the respective equations and parameters. And the results are expressed visually in various ways. Therefore, inundation analysis results of dual drainage model are used as important data for urban flood prevention plan. In this study, the applicability of the COBRA model, which can be interpreted by combining the dual drainage system with the natural watershed and the urban watershed, was investigated. And the results were compared with other dual drainage models (XP-SWMM, UFAM) to determine suitability of the results. For the same watershed, the XP-SWMM simulates the flooding characteristics of 3 types of dual drainage system model and the internal flooding characteristics due to the lack of capacity of the conduit. UFAM showed the lowest inundation analysis results compared with the other models according to characteristics of consideration of street inlet. COBRA showed the general result that the flooded area and the maximum flooding depth are proportional to the increase in rainfall. It is considered that the COBRA model is good in terms of the stability of the model considering the characteristics of the model to simulate the effective rainfall according to the soil conditions and the realistic appearance of the flooding due to the surface reservoir.

Transfer of Arsenic from Paddy Soils to Rice Plant under Different Cover Soil Thickness in Soil Amendments in Abandoned Coal Mine (폐탄광지역 비소오염 농경지(논) 개량 시 복토두께에 따른 비소의 벼 전이 및 토양용액 특성)

  • Koh, Il-Ha;Kwon, Yo Seb;Jeong, Mun-Ho;Ko, Ju In;Bak, Gwan-In;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.483-494
    • /
    • 2021
  • This study was carried out to investigate the feasibility of reducing clean cover soil using a flooded column test in arsenic-contaminated farmland reclamation of abandoned coal mine area that shows generally low or about worrisome level (25 mg/kg) of Korea soil environment conservation act unlike abandoned metal mine. During the monitoring period of soil solution for 4 months, chemical properties (pH, EC, ORP, Fe, Mn, Ca, and As) in each layer (clean soil cover and contaminated/stabilized soil) showed different variation. This result revealed that soil solution in stabilized or contaminated soil rarely affected that in cover soil. Whether stabilized or not, arsenic concentrations in the rice roots grown in the soil covers with the thickness of 40 cm decreased by 98% in compared with the that grown in the control soil. In case of the soil covers with 20 cm thickness on stabilized soil, it decreased by 80% and this was 22 percentage point higher than when the soil of lower layer was not stabilized. Thus, reducing clean cover soil could be possible in contaminated farmland soil reclamation if appropriate stabilization of contaminated soil is carried.

Flood Mapping Using Modified U-NET from TerraSAR-X Images (TerraSAR-X 영상으로부터 Modified U-NET을 이용한 홍수 매핑)

  • Yu, Jin-Woo;Yoon, Young-Woong;Lee, Eu-Ru;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1709-1722
    • /
    • 2022
  • The rise in temperature induced by global warming caused in El Nino and La Nina, and abnormally changed the temperature of seawater. Rainfall concentrates in some locations due to abnormal variations in seawater temperature, causing frequent abnormal floods. It is important to rapidly detect flooded regions to recover and prevent human and property damage caused by floods. This is possible with synthetic aperture radar. This study aims to generate a model that directly derives flood-damaged areas by using modified U-NET and TerraSAR-X images based on Multi Kernel to reduce the effect of speckle noise through various characteristic map extraction and using two images before and after flooding as input data. To that purpose, two synthetic aperture radar (SAR) images were preprocessed to generate the model's input data, which was then applied to the modified U-NET structure to train the flood detection deep learning model. Through this method, the flood area could be detected at a high level with an average F1 score value of 0.966. This result is expected to contribute to the rapid recovery of flood-stricken areas and the derivation of flood-prevention measures.

An Analysis of the Application Effect of LID Technology in Urban Inundation Using Two-Dimensional Model (2차원 모델을 이용한 도시침수지역에서의 LID기법 적용효과 분석)

  • Minjin Jung;Juho Kim;Changdeok Jang;Kyewon Jun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.13-22
    • /
    • 2023
  • The importance of preemptive flood preparation is growing as the importance of preparing for climate change increases due to record heavy rains in the Seoul metropolitan area in August 2022. Although it is responding to flood control through reservoirs and sediment sites, the government is preparing excellent spill reduction measures through a preliminary consultation system for Low Impact Development (LID). In this study, the depth of flooding was simulated when LID technologies were applied to the Sillim 2-drain region in Dorimcheon Stream basin, an urban stream, using XP-SWMM, a two-dimensional model. In addition, the analysis and applicability of the effect of reducing rainfall runoff for the largest rainfall in a day were reviewed, and it was judged to be effective as a method of reducing flooding in urban areas. Although there is a limitation in which the reduction effect is overestimated, it is thought that the LID technologies can be a significant countermeasure as a countermeasure for small-scale flooded areas where some flooding occurs after structural flooding measures are established.

A Study on the Water-Faring Community and Architectural Forms of the 'Tanka People' in Macau from the Ming and Qing Dynasties to the Modern Period (명청-근대시기 마카오 "수상인(水上人)"의 취락 및 건축유형 연구)

  • Hong, Shu-Ying;Han, Dong-Soo
    • Journal of architectural history
    • /
    • v.32 no.3
    • /
    • pp.7-20
    • /
    • 2023
  • The compositions of ethnic groups in Macau vary with time. Prior to the opening of the port, the majority of the residents in Macau were Chinese people, including those living on land and at sea. After the port was opened, with the increase of Portugal businessmen and missionaries, the population was divided into Chinese people and foreigners (so-called 'Yiren' or 夷人 in Chinese). Chinese people living on land were mainly of Hakka, Fujian, and Cantonese descent. Those living at sea were referred to as 'Tanka People' (named 'Danmin' or 蜑民in Chinese). They lived on floating boats for their entire lives and were similar to the 'drifters' in Japan. Since modern times, many refugees from mainland China and Southeast Asia flooded into Macau due to warfare. The development of industrialization required a larger number of laborers, and some 'coolies' entered Macau in legal or illegal ways, making it a multi-ethnic city. However, the Tanka people were not considered a minority ethnic group under the national ethnic policy of 56 ethnic groups since they did not have an exclusive language and shared dialects in different regions. As the ports inhabited by Tanka people gradually restored foreign trade, the boats and stilt houses used by Tanka people were dismantled to expand the infrastructure area of the ports. Many Tanka people began to live on land and marry people on land, leading to the disappearance of the Tanka group in Macau. The fishing boats and stilt houses used by Tanka people have also disappeared, with only a few remaining in areas such as Pearl River Delta and Hong Kong. This paper examines the natural and social environment of Tanka people in Macau from the Ming and Qing dynasties to the Republic of China, as well as the adaptive changes they adopted for the aforementioned environment in terms of living space and architectural type, on the basis of summarizing the historical activities of Tanka people. Finally, this study provides a layout plan and interior structure of the most commonly used boat for Tanka people from the Ming and Qing dynasties to the Republic of China, with the use of CAD and other technical software, along with reference to written historical documentation, and provides a case study for further research on the architectural history of Macau's inner harbor cities, from anthropological and folklore perspectives.

Propagation Analysis of Dam Break Wave using Approximate Riemann solver (Riemann 해법을 이용한 댐 붕괴파의 전파 해석)

  • Kim, Byung Hyun;Han, Kun Yeon;Ahn, Ki Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.429-439
    • /
    • 2009
  • When Catastrophic extreme flood occurs due to dam break, the response time for flood warning is much shorter than for natural floods. Numerical models can be powerful tools to predict behaviors in flood wave propagation and to provide the information about the flooded area, wave front arrival time and water depth and so on. But flood wave propagation due to dam break can be a process of difficult mathematical characterization since the flood wave includes discontinuous flow and dry bed propagation. Nevertheless, a lot of numerical models using finite volume method have been recently developed to simulate flood inundation due to dam break. As Finite volume methods are based on the integral form of the conservation equations, finite volume model can easily capture discontinuous flows and shock wave. In this study the numerical model using Riemann approximate solvers and finite volume method applied to the conservative form for two-dimensional shallow water equation was developed. The MUSCL scheme with surface gradient method for reconstruction of conservation variables in continuity and momentum equations is used in the predictor-corrector procedure and the scheme is second order accurate both in space and time. The developed finite volume model is applied to 2D partial dam break flows and dam break flows with triangular bump and validated by comparing numerical solution with laboratory measurements data and other researcher's data.