• Title/Summary/Keyword: Flood level

Search Result 759, Processing Time 0.024 seconds

Assessment on Flood Characteristics Changes Using Multi-GCMs Climate Scenario (Multi-GCMs의 기후시나리오를 이용한 홍수특성변화 평가)

  • Son, Kyung-Hwan;Lee, Byong-Ju;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.789-799
    • /
    • 2010
  • The objective of this study is to suggest an approach for estimating probability rainfall using climate scenario data based GCM and to analyze changes of flood characteristics like probability rainfall, flood quantile and flood water level under climate change. The study area is Namhan river basin. Probability rainfalls which is taken 1440 minutes duration and 100-year frequency are estimated by using IPCC SRES A2 climate change scenario for each time period (S0: 1971~2000; S1: 2011~2040; S2: 2041~2070; S3: 2071~2100). Flood quantiles are estimated for 17 subbasins and flood water level is analyzed in the main channel from the downstream of Chungju dam to the upstream of Paldang dam. Probability rainfalls, peak flow from flood quantile and water depth from flood water level have increase rate in the range of 13.0~15.1 % based S0 (142.1 mm), 29.1~33.5% based S0 ($20,708\;m^3/s$), 12.6~13.6% in each S1, S2 and S3 period, respectively.

Sensitivity analysis of flood vulnerability index of levee according to climate change (기후변화에 따른 제방의 홍수취약성지수 민감도 분석)

  • Lee, Hoo Sang;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1161-1169
    • /
    • 2018
  • In this study, a new methodology was proposed to evaluate the flood vulnerability of river levee and to investigate the effect on the levee where the water level changes according to climate change. The stability of levee against seepage was evaluated using SEEP/W model which is two-dimensional groundwater infiltration model. In addition to the infiltration behavior, it is necessary to analyze the vulnerability of the embankment considering the environmental conditions of the river due to climate change. In this study, the levee flood vulnerability index (LFVI) was newly developed by deriving the factors necessary for the analysis of the levee vulnerability. The size of river levee was investigated by selecting the target area. The selected levees were classified into upstream part, midstream part and downstream part at the nearside of Seoul in the Han river, and the safety factor of the levee was analyzed by applying the design flood level of the levee. The safety ratio of the levee was analyzed by applying the design flood level considering the current flood level and the scenario of climate change RCP8.5. The degree of change resulting from climate change was identified for each factor that forms the levee flood vulnerability index. By using the levee flood vulnerability index value utilizing these factors comprehensively, it was finally possible to estimate the vulnerability of levee due to climate change.

A Study on Application Analysis Using RETRAN Computer Code for the Environmental Qualification Flood Analysis Following the Main Feed Water Line Break (주급수관 파단에 따른 내환경검증 침수분석용 전산코드 RETRAN의 적용 해석연구)

  • Park, Young-Chan;Cho, Cheon-Hwey;Hong, Sung-In
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.103-112
    • /
    • 2007
  • Flood issue for nuclear power plants designed and built in 1970 is extremely severe for main steam header compartment and main feedwater line region of intermediate building and lower floor. A calculation for flood level at the main feedwater line isolation compartment is now performing by hand calculation. But, this methodology is quite conservative assumption. The goal of this study was to develop method to analyze flowrate using the RETRAN-3D computer code, and the developed method was applied to flood level analysis following main feedwater line break. As a result of analysis, flood level was low remarkably.

Analysis of Flood Level Changes by Creating Nature-based Flood Buffering Section (자연성기반 홍수완충공간 조성에 따른 홍수위 변화 분석)

  • Ryu, Jiwon;Ji, Un;Kim, Sanghyeok;Jang, Eun-kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.735-747
    • /
    • 2023
  • In recent times, the sharp increase in extreme flood damages due to climate change has posed a challenge to effectively address flood-related issues solely relying on conventional flood management infrastructure. In response to this problem, this study aims to consider the effectiveness of nature-based flood management approaches, specifically levee retreat and relocation. To achieve this, we utilized a 1D numerical model, HEC-RAS, to analyze the flood reduction effects concerning floodwater levels, flow velocities, and time-dependent responses to a 100-year frequency flood event. The analysis results revealed that the effect of creating a flood buffer zone of the nature-based solution extends from upstream to downstream, reducing flood water levels by up to 30 cm. The selection of the flow roughness coefficient in consideration of the nature-based flood buffer space creation characteristics should be based on precise criteria and scientific evidence because it is sensitive to the flood control effect analysis results. Notably, floodwater levels increased in some expanded floodplain sections, and the reduction in flow velocities varied depending on the ratio of the expanded cross-sectional area. In conclusion, levee retreat and floodplain expansion are viable nature-based alternatives for effective flood management. However, a comprehensive design approach is essential considering flood control effects, flow velocity reduction, and the timing of peak water levels. This study offers insights into addressing the challenges of climate-induced extreme flooding and advancing flood management strategies.

Highway flood hazard mapping in Thailand using the Multi Criteria Analysis based the Analytic Hierarchy Process

  • Budhakooncharoen, Saisunee;Mahadhamrongchai, Wichien;Sukolratana, Jiraroth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.236-236
    • /
    • 2015
  • Flood is one of the major natural disasters affecting millions of people. Thailand also, frequently faces with this type of disaster. Especially, 2011 mega flood in Central Thailand, inundated highway severely attributed to the failure of national economic and risk to life. Lesson learned from such an extreme event caused flood monitoring and warning becomes one of the sound mitigations. The highway flood hazard mapping accomplished in this research is one of the strategies. This is due to highway flood is the potential risk to life and limb, and potential damage to property. Monitoring and warning therefore help reducing live and property losses. In this study, degree of highway flood hazard was assessed by weighting factors for each cause of the highway flood using Multi Criteria Analysis (MCA) based Analytic Hierarchy Process (AHP). These weighting factors are the essential information to classify the degree of highway flood hazard to enable pinpoint on flood monitoring and flood warning in hazard areas. The highway flood causes were then investigated. It was found that three major factors influence to the highway flood are namely the highway characteristics, the hydrological characteristics and the land topography characteristics. The weight of importance for each cause of the highway flood in the whole country was assessed by weighting 3 major factors influence to the highway flood. According to the result of MCA analysis, the highway, the hydrological and the land topography characteristics were respectively weighted as 35, 35 and 30 percent influence to the cause of highway flood. These weighting factors were further utilized to classify the degree of highway flood hazard. The Weight Linear Combination (WLC) method was used to compute the total score of all highways according to each factor. This score was later used to categorize highway flood as high, moderate and low degree of hazard levels. Highway flood hazard map accomplished in this research study is applicable to serve as the handy tool for highway flood warning. However, to complete the whole warning process, flood water level monitoring system for example the camera gauge should be installed in the hazard highway. This is expected to serve as a simple flood monitor as part of the warning system during such extreme or critical event.

  • PDF

Implementation of real-time water level prediction system using LSTM-GRU model (LSTM-GRU 모델을 활용한 실시간 수위 예측 시스템 구현)

  • Cho, Minwoo;Jeong, HanGyeol;Park, Bumjin;Im, Haran;Lim, Ine;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.216-218
    • /
    • 2022
  • Natural disasters caused by abnormal climates are continuously increasing, and the types of natural disasters that cause the most damage are flood damage caused by heavy rains and typhoons. Therefore, in order to reduce flood damage, this paper proposes a system that can predict the water level, a major parameter of flood, in real time using LSTM and GRU. The input data used for flood prediction are upstream and downstream water levels, temperature, humidity, and precipitation, and real-time prediction is performed through the pre-trained LSTM-GRU model. The input data uses data from the past 20 hours to predict the water level for the next 3 hours. Through the system proposed in this paper, if the risk determination function can be added and an evacuation order can be issued to the people exposed to the flood, it is thought that a lot of damage caused by the flood can be reduced.

  • PDF

Flood Forecasting and Warning System using Real-Time Hydrologic Observed Data from the Jungnang Stream Basin (실시간 수문관측자료에 의한 돌발 홍수예경보 시스템 -중랑천 유역을 중심으로-)

  • Lee, Jong-Tae;Seo, Kyung-A;Hur, Sung-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.51-65
    • /
    • 2010
  • We suggest a simple and practical flood forecasting and warning system, which can predict change in the water level of a river in a small to medium-size watershed where flash flooding occurs in a short time. We first choose the flood defense target points, through evaluation of the flood risk of dike overflow and lowland inundation. Using data on rainfall, and on the water levels at the observed and prediction points, we investigate the interrelations and derive a regression formula from which we can predict the flood level at the target points. We calculate flood water levels through a calibrated flood simulation model for various rainfall scenarios, to overcome the shortage of real water stage data, and these results as basic population data are used to derive a regression formula. The values calculated from the regression formula are modified by the weather condition factor, and the system can finally predict the flood stages at the target points for every leading time. We also investigate the applicability of the prediction procedure for real flood events of the Jungnang Stream basin, and find the forecasting values to have close agreement with the surveyed data. We therefore expect that this suggested warning scheme could contribute usefully to the setting up of a flood forecasting and warning system for a small to medium-size river basin.

Effect of Observed Discharge Data on Regional Flood Frequency Analysis in the Han River Basin (한강유역 관측유출자료가 지역홍수빈도분석 결과에 미치는 영향)

  • Kim, Nam Won;Lee, Jeong Eun;Lee, Jeongwoo;Jung, Yong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.511-522
    • /
    • 2015
  • This study assessed the impact of uncertainties in flood data on the results of flood frequency analysis for Han river basin. To meet this aim, this study quantified assessment focused on the index flood and quantile by regional flood frequency analysis using the flood data from 17 water level gauges in Han river basin. We analysed the results categorized by three cases according to the characteristics of the measured data. Firstly, we analyzed the regional flood frequency for the water level gauge in the Pyungchang river basin to investigate the impact of water level data. The results has the error of 0.240 with respect to the mean flood. Secondly, we examined the impact of uncertainty in measurement data generated by the application of rating on the results of regional flood frequency analysis. We have compared the results by applying the rating estimated for each year to the one by the recently estimated rating. The results showed that the mean error has 0.246 in terms of the mean flood. Finally, we have inferred the regional flood frequency analysis results with the regulated flow in the downstream area of dams. The regulated specific discharge in the downstream area of dams controlled by dam operation showed a large difference to the estimated specific discharge in the downstream area of dams by extension of the natural specific discharge in the upstream area using the regionalization method.

Hydraulic and Hydrologic Analysis by Washland Construction (천변저류지 조성에 따른 수리.수문분석)

  • Kim, Duck-Gil;Kyoung, Min-Soo;Kim, Sang-Dan;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.483-489
    • /
    • 2008
  • Recently, we have a growing interest in the washland construction for the function of flood defense in flood season and also as an ecosystem in non flood season. Therefore this study performed the hydraulic and hydrologic analysis for washland construction plan as sustainable flood defense alternative in flood season and wetland application possibility. The study area is Topyoung-cheon basin in Changnyeong-gun, Gyeongnam. A Topyoung-cheon basin includes a Woopo wetland which is the largest nature wetland in Korea and a Topyoung-cheon is ond of the tributaries of Nakdong river. We assume that the artificial washland is constructed in upperstream and downstream of Woopo wetland, and In flood season, the hydraulic analysis for the investigation of the effectiveness of flood level mitigation is performed by HEC-RAS model. Simulation of model is performed from 7 scenarioes of washland construction. As the result in flood season, the flood level is reduced by maximum 0.56 meter as we construct the washlands by 7 scenarios. Also, we performed hydrologic analysis for the investigation of water balance in washland in non flood season using SWAT model. From the result of water balance analysis, we found that the minimum water level of washland was maintained in about 1.3 meter for one year.

Development of Realtime Flood Monitoring System composed of CCD Camera and Water Level Gauge (CCD 카메라와 수위계를 조합한 철도교량 실시간 홍수위 감시시스템 개발)

  • Park, Young-Kon;Yoon, Hee-Taek;Kim, Seon-Jong;Shin, Min-Ho;Jung, Seung-Yong
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.224-228
    • /
    • 2004
  • In these days, as it frequently happens that water level in the river exceeds the design floods due to irregular heavy rainfall, so it is required, first of an, to manage with railroad bridge safely. Because train control criterion under heavy rainfall is still not prepared and automatic flood monitoring system for railroad bridges is not used, worry over invisible economic loss due to train passage delay is in existence. Therefore, it is important to secure the safety and detect the risk like turnover or failure of railroad bridges through systematic disaster prevention system. And the transition from conventional monitoring method to real time monitoring method supported by sensors and communication system with high technology is rapidly needed. This research is on developing the real time flood monitoring system which prevents railroad disasters in advance by detecting continuously the water level of railroad bridge through CCD camera and water level gauge.

  • PDF