• Title/Summary/Keyword: Flood index

Search Result 283, Processing Time 0.024 seconds

Evaluation of Inland Inundation Risk in Urban Area using Fuzzy AHP (Fuzzy AHP 기법을 이용한 도시지역의 내수침수위험도 평가)

  • Shin, Ji Yae;Park, Yei Jun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.789-799
    • /
    • 2014
  • This study presented how to evaluate the inland inundation risk considering the characteristics of inland flood. Fuzzy AHP (Analytic Hierarchy Process), which can deal with the uncertainty or ambiguousness of the decision-making process, was used to estimate the inundation risk. The criteria used for inland inundation risk include the physical index, social index and inland flood. Each index contains three detailed indicators then total nine indicators were employed in this study. The inundation risk evaluation was carried out for each node (manhole) within the drainage system, not to the administrative extent, which enabled us to point out nodes with high risk. The proposed Fuzzy AHP was applied to Geoje district in Busan. The results indicated that the junction of Oncheoncheon and Geojecheon has high risk which is consistent with the fact that this junction has already experienced floods in the past. The proposed method can be used for evaluating inland inundation risk and preparing flood prevention plans in inland flood-prone urban areas.

Flood Risk Assessment Based on Bias-Corrected RCP Scenarios with Quantile Mapping at a Si-Gun Level (분위사상법을 적용한 RCP 시나리오 기반 시군별 홍수 위험도 평가)

  • Park, Jihoon;Kang, Moon Seong;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.73-82
    • /
    • 2013
  • The main objective of this study was to evaluate Representative Concentration Pathways (RCP) scenarios-based flood risk at a Si-Gun level. A bias correction using a quantile mapping method with the Generalized Extreme Value (GEV) distribution was performed to correct future precipitation data provided by the Korea Meteorological Administration (KMA). A series of proxy variables including CN80 (Number of days over 80 mm) and CX3h (Maximum precipitation during 3-hr) etc. were used to carry out flood risk assessment. Indicators were normalized by a Z-score method and weighted by factors estimated by principal component analysis (PCA). Flood risk evaluation was conducted for the four different time periods, i.e. 1990s, 2025s, 2055s, and 2085s, which correspond to 1976~2005, 2011~2040, 2041~2070, and 2071~2100. The average flood risk indices based on RCP4.5 scenario were 0.08, 0.16, 0.22, and 0.13 for the corresponding periods in the order of time, which increased steadily up to 2055s period and decreased. The average indices based on RCP8.5 scenario were 0.08, 0.23, 0.11, and 0.21, which decreased in the 2055s period and then increased again. Considering the average index during entire period of the future, RCP8.5 scenario resulted in greater risk than RCP4.5 scenario.

Mapping of Inundation Vulnerability Using Geomorphic Characteristics of Flood-damaged Farmlands - A Case Study of Jinju City - (침수피해 정보를 이용한 농경지의 지형학적 침수취약지도 작성 - 진주시를 사례로 -)

  • Kim, Soo-Jin;Suh, Kyo;Kim, Sang-Min;Lee, Kyung-Do;Jang, Min-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.3
    • /
    • pp.51-59
    • /
    • 2013
  • The objective of this study was to make a map of farmland vulnerability to flood inundation based on morphologic characteristics from the flood-damaged areas. Vulnerability mapping based on the records of flood damages has been conducted in four successive steps; data preparation and preprocessing, identification of morphologic criteria, calculation of inundation vulnerability index using a fuzzy membership function, and evaluation of inundation vulnerability. At the first step, three primary digital data at 30-m resolution were produced as follows: digital elevation model, hill slopes map, and distance from water body map. Secondly zonal statistics were conducted from such three raster data to identify geomorphic features in common. Thirdly inundation vulnerability index was defined as the value of 0 to 1 by applying a fuzzy linear membership function to the accumulation of raster data reclassified as 1 for cells satisfying each geomorphic condition. Lastly inundation vulnerability was suggested to be divided into five stages by 0.25 interval i.e. extremely vulnerable, highly vulnerable, normally vulnerable, less vulnerable, and resilient. For a case study of the Jinju, farmlands of $138.6km^2$, about 18% of the whole area of Jinju, were classified as vulnerable to inundation, and about $6.6km^2$ of farmlands with elevation of below 19 m at sea water level, slope of below 3.5 degrees, and within 115 m distance from water body were exposed to extremely vulnerable to inundation. Comparatively Geumsan-myeon and Sabong-myeon were revealed as the most vulnerable to farmland inundation in the Jinju.

Comparison of Runoff Models for Small River Basins (소하천 유역에서의 유출해석모형 비교)

  • 강인식
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.209-221
    • /
    • 1996
  • It may be difficult to make exact estimates of peak discharge or runoff depth of a flood and to establish the proper measurement for the flood protection since water stages or discharges have been rarely measured at small river basins in Korea. Three small catchments in the Su-Young river basin in Pusan were selected for the study areas. Various runoff parameters for the study areas were determined, and runoff analyses were performed using three different runoff models available in literatures; the storage function method, the discrete, linear, input-output model, and the linear reservoir model. The hydrographs calculated by three different methods showed good agreement with the observed flood hydrographs, indicating that the models selected are all capable of sucessfully modeling the flood events for small watersheds. The storage function method gave the best results in spite of its weakness that it could not be applicable to small floods, while the linear reservoir model was found to provide relatively good results with less parameters. The capabilities of simulating flood hydrographs were also evaluated based on the effective rainfall from the storage function parameters, the $\Phi$-index method, and the constant percentage method. For the On-Cheon stream watershed, the storage function parameters provided better estimates of effective rainfall for regenerating flood hydrographs than any others considered in the study. The $\Phi$-index method, however, resulted in better estimates of effective rainfall for the other two study areas.

  • PDF

Climate Change Impacts on Meteorological Drought and Flood (기후변화가 기상학적 가뭄과 홍수에 미치는 영향)

  • Lee, Dong-Ryul;Kim, Ung-Tae;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.4
    • /
    • pp.315-328
    • /
    • 2004
  • Recent increase of green house gases may increase the frequency of meteorological extremes. In this study, using the index and meteorological data generated by the Markov chain model under the condition of GCM predictions, the possible width of variability of flood and drought occurrences were predicted. As results, we could find that the frequency of both floods and droughts would be increased to make the water resources planning and management more difficult. Thus, it is recommended to include the effect of climate change on water resources in the related policy making.

Estimation of probabilistic flood at Ungauged Locations by development of index flood frequency curves (지표홍수 빈도곡선의 개발에 의한 미 계측지점의 확률 홍수량 추정)

  • Yoon, Yong-Nam;Shin, Chang-Kun;Jang, Su-Hyeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1052-1056
    • /
    • 2004
  • 본 연구에서는 유역내 홍수량 실측지점의 연최대 홍수량 자료 계열을 빈도 분석하여 지표 홍수량 빈도 곡선을 작성하고, 연 평균 홍수량과 유역 특성 인자간의 상관관계식을 유도하여 미계측 지점의 연평균 홍수량에 상응하는 확률 홍수량을 추정할 수 있는 방법을 개발하였다. 대상유역은 홍수자료가 풍부하고 신뢰성 있는 한강유역으로 선정하였으며, 유역의 홍수량은 댐 건설로 인하여 댐 건설 이전의 홍수량에 비하여 줄어들기 때문에 실측 유량자료의 빈도해석을 통한 홍수량 산정시에는 댐과 같은 수공구조물 건설의 영향으로 유역의 조건이 변경됨에 따라 유량자료의 불연속이 발생하는 것을 고려하였다. 한강유역의 홍수빈도 분석시 최적 확률분포형은 Gumbel 분포형으로 채택되었으며, 비 확률홍수빈도곡선을 작성한 결과 유역면적가 단위홍수량 상관성은 0.83정도로 모두 상관성을 보였으며, 지점별 주요지형인자와 연평균홍수량은 높은 상관성을 보이고, 연평균홍수량과 주요지형인자간의 회귀분석을 동하여 산정된 홍수량과 기존 하천정비 기본계획에 수록되어 있는 계획홍수량을 비교검토 하였다.

  • PDF

The study of comprehensive index development for flood risk assessment (홍수 위험도 평가를 위한 종합적 지수 개발에 관한 연구)

  • Kim, Daeho;Kim, Young-Oh;Jee, Hee Won;Kang, Tae-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.395-395
    • /
    • 2019
  • 대한민국에서 홍수는 매해 여름 발생하는 자연재해로 인명, 재산, 사회 기반시설에 심각한 피해를 일으키고 있으며, 기후변화로 인해 홍수 사상이 과거와는 다른 형태이다. 이를 대비하기 위해서는 기후변화를 고려한 홍수 위험도(flood risk)를 평가를 통해 적절한 대비책을 수립하여야 한다. 이에 본 연구는 전국의 홍수위험도를 중권역 별로 평가하는 홍수위험지수(Flood Risk Index, FRI)를 새로이 개발하였다. FRI는 세 가지 세부 지표인 위협도, 노출도, 대응능력(Hazard, Exposure, Capacity)의 결합으로 산정된다. 위협도는 직접적인 홍수의 원인이 되는 기상학적 요인인 강수에 대한 정보이고, 노출도는 홍수로부터 피해를 입을 수 있는 인명 및 재산에 대한 요소이다. 대응능력은 자연 환경과 인간의 중장기 전략을 고려한 적응능력(adaptive capacity)과 홍수 발생 시 조치능력(coping capacity)으로 나눠져 평가된다. 즉 위협도와 노출도가 높을수록 홍수 위험도가 커지며, 대응능력이 뛰어날수록 홍수 위험도는 줄어든다. 인자들은 특정 유형의 위험도에만 초점이 맞춰지지 않고 다양한 방면을 포괄적으로 평가할 수 있도록 선정되었으며, 통계 기법을 활용해 FRI를 산정하였다. 크론바흐 알파 계수(Cronbach's ${\alpha}$)를 통해 FRI의 타당성을 진단하였으며, 홍수피해금액간의 스피어만(Spearman) 상관계수를 통해 FRI의 설명력을 검증해 신뢰도를 제고했다. 최종적으로 환경부로부터 제공받은 미래 기후 시나리오를 사용하여 FRI를 산출해 미래의 세 시점(2030년대, 2050년대, 2080년대)의 전국 홍수위험도 평가를 진행하였다.

  • PDF

Development of integrated disaster mapping method (II) : disaster mapping with risk analysis (통합 재해지도 작성 기법 개발(II) : 리스크 분석을 적용한 재해지도 작성)

  • Park, Jun Hyung;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.85-97
    • /
    • 2022
  • In this study, a method for an integrated flood risk mapping was proposed that simultaneously considers the flood inundation map indicating the degree of risk and the disaster vulnerability index. This method creates a new disaster map that can be used in actual situations by providing various and specific information on a single map. In order to consider the human, social and economic factors in the disaster map, the study area was divided into exposure, vulnerability, responsiveness, and recovery factors. Then, 7 indicators for each factor were extracted using the GIS tool. The data extracted by each indicator was classified into grades 1 to 5, and the data was selected as a disaster vulnerability index and used for integrated risk mapping by factor. The risk map for each factor, which overlaps the flood inundatoin map and the disaster vulnerability index factor, was used to establish an evacuation plan by considering regional conditions including population, assets, and buildings. In addition, an integrated risk analysis method that considers risks while converting to a single vulnerability through standardization of the disaster vulnerability index was proposed. This is expected to contribute to the establishment of preparedness, response and recovery plans for providing detailed and diverse information that simultaneously considers the flood risk including social, humanistic, and economic factors.

Development of Flood Control Index to evaluate National Safety from Flood Disaster (국가치수안전도 평가를 위한 치수지표의 개발)

  • Lee, Joo-Heon;Cho, Dong-Jin;Park, Doo-Ho;Choi, Dong-Jin;Park, Sung-Je
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1748-1753
    • /
    • 2009
  • 전 세계에 걸쳐서 급격하게 일어나고 있는 기후변화로 인하여 최근의 홍수발생 빈도나 규모는 과거와 다른 형태를 보이고 있으며, 우리나라는 좁은 홍수범람지역에 인구와 자산이 과도하게 집중되면서 홍수피해 양상은 크게 변하여 홍수피해액이 기하급수적으로 늘어나고 있다. 이에 따라 치수지표의 개발을 통하여 재해피해 규모를 정량화하고, 치수안전도를 평가하고자 한다.

  • PDF