• Title/Summary/Keyword: Flood impact

Search Result 274, Processing Time 0.024 seconds

A Study on Impact of Flood Disaster and Quality of Life among the Flood Victims (수재민의 수해로 인한 영향과 삶의 질에 관한 연구)

  • Lee, Seon-Hye
    • Research in Community and Public Health Nursing
    • /
    • v.15 no.1
    • /
    • pp.145-154
    • /
    • 2004
  • Purpose: This study was performed to identify the extent of flood damage, the quality of life(QOL) and their relationships to flood victims. Method: The subjects of this study were 248(men 100, women 148) who live around seven areas in K province impacted by Typhoon Rusa. Data was collected between February 25 and March 21, 2003 by structured questionnaires. The instruments were composed of two parts. The extent of flood damage were the impacts of daily living by revised from Ginexi et aI.(2000). QOL was used to WHOQOL BREF Korean Version by Min et al.(2002). The SPSS program was used for its descriptive, reliability, and correlation analysis. Result: The means of the extent of flood damage were: daily living 1.88, economy 4.60, and health 3.75. The mean of total QOL was 2.95: social domain 3.29, overall satisfaction 3.09, physical domain 3.06, psychological domain 2.95, and environmental domain 2.68. The negative correlations were between the Impact of daily living and Total QOL(r=-.143, p<.05), Physical QOL(r=-.220, p<.01) and Overall satisfaction (r=-141, p<.05). Conclusion: This study has learned that the impact of the flood had negative effects on the flood victims quality of life, and the difficulties they faced in their daily lives. Further research will be needed to explore influencing factors on QOL in disaster victims.

  • PDF

A study on prediction method for flood risk using LENS and flood risk matrix (국지 앙상블자료와 홍수위험매트릭스를 이용한 홍수위험도 예측 방법 연구)

  • Choi, Cheonkyu;Kim, Kyungtak;Choi, Yunseok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.657-668
    • /
    • 2022
  • With the occurrence of localized heavy rain while river flow has increased, both flow and rainfall cause riverside flood damages. As the degree of damage varies according to the level of social and economic impact, it is required to secure sufficient forecast lead time for flood response in areas with high population and asset density. In this study, the author established a flood risk matrix using ensemble rainfall runoff modeling and evaluated its applicability in order to increase the damage reduction effect by securing the time required for flood response. The flood risk matrix constructs the flood damage impact level (X-axis) using flood damage data and predicts the likelihood of flood occurrence (Y-axis) according to the result of ensemble rainfall runoff modeling using LENS rainfall data and as well as probabilistic forecasting. Therefore, the author introduced a method for determining the impact level of flood damage using historical flood damage data and quantitative flood damage assessment methods. It was compared with the existing flood warning data and the damage situation at the flood warning points in the Taehwa River Basin and the Hyeongsan River Basin in the Nakdong River Region. As a result, the analysis showed that it was possible to predict the time and degree of flood risk from up to three days in advance. Hence, it will be helpful for damage reduction activities by securing the lead time for flood response.

A Study on the Impact Range Calculation at the Downstream of Dam (댐이 하류하천에 미치는 영향권 산정에 관한 연구)

  • Park, Bong-Jin;Kim, Hyeon-Sik;Jung, Kwan-Sue;Ji, Hong-Ki
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.1009-1021
    • /
    • 2008
  • In this study, 4 indices of hydraulic & hydrological, geomorphological, eco & environmental, social effect and 38 items are selected to calculate impact range of downstream of dam. The Analytic Hierarchy Process(AHP) was applied to determine the priority of impact range calculation indices and items. As results of indices valuation, hydraulic & hydrological effect is the first priority, the second is eco & environmental, next are geomorphological and social effect. As results of items valuation, the design flood of dam is the first priority, the second is the natural flood & design flood of channel, next are the design flood rate of channel, drainage area and back water level caused by downstream of dam. In the case of Daechung dam, impact ranges were estimated 47.21 km in terms of the design flood of dam, 45.71 km of the design flood rate of channel, 13.94 km of the drainage area.

Assessment of extreme precipitation changes on flood damage in Chungcheong region of South Korea

  • Bashir Adelodun;Golden Odey;Qudus Adeyi;Kyung Sook Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.163-163
    • /
    • 2023
  • Flooding has become an increasing event which is one of the major natural disasters responsible for direct economic damage in South Korea. Driven by climate change, precipitation extremes play significant role on the flood damage and its further increase is expected to exacerbate the socioeconomic impact in the country. However, the empirical evidence associating changes in precipitation extremes to the historical flood damage is limited. Thus, there is a need to assess the causal relationship between changes in precipitation extremes and flood damage, especially in agricultural region like Chungcheong region in South Korea. The spatial and temporal changes of precipitation extremes from 10 synoptic stations based on daily precipitation data were analyzed using the ClimPACT2 tool and Mann-Kendall test. The four precipitation extreme indices consisting of consecutive wet days (CWD), number of very heavy precipitation wet days (R30 mm), maximum 1-day precipitation amount (Rx1day), and simple daily precipitation intensity (SDII), which represent changes in intensity, frequency, and duration, respectively, and the time series data on flooded area and flood damage from 1985 to 2020 were used to investigate the causal relationship in the ARDL-ECM framework and pairwise Granger causality analysis. The trend results showed that majority of the precipitation indices indicated positive trends, however, CWD showed no significant changes. ARDL-ECM framework showed that there was a long-run relationship among the variables. Further analysis on the empirical results showed that flooded area and Rx1day have significant positive impacts on the flood damage in both short and long-runs while R30 mm only indicated significant positive impact in the short-run, both in the current period, which implies that an increase in flooded area, Rx1day, and R30 mm will cause an increase in the flood damage. The pairwise Granger analysis showed unidirectional causality from the flooded area, R30 mm, Rx1day, and SDII to flood damage. Thus, these precipitation indices could be useful as indicators of pluvial flood damage in Chungcheong region of South Korea.

  • PDF

Impact spectrum of flood hazard on seismic vulnerability of bridges

  • Yilmaz, Taner;Banerjee, Swagata
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.515-529
    • /
    • 2018
  • Multiple hazards (multihazard) conditions may cause significant risk to structures that are originally designed for individual hazard scenarios. Such a multihazard condition arises when an earthquake strikes to a bridge pre-exposed to scour at foundations due to flood events. This study estimates the impact spectrum of flood-induced scour on seismic vulnerability of bridges. Characteristic river-crossing highway bridges are formed based on the information obtained from bridge inventories. These bridges are analyzed under earthquake-only and the abovementioned multihazard conditions, and bridge fragility curves are developed at component and system levels. Research outcome shows that bridges having pile shafts as foundation elements are protected from any additional seismic vulnerability due to the presence of scour. However, occurrence of floods can increase seismic fragility of bridges at lower damage states due to the adverse impact of scour on bridge components at superstructure level. These findings facilitate bridge design under the stated multihazard condition.

Assessment of Flood Impact on Downstream of Reservoir Group at Hwangryong River Watershed (황룡강 유역 저수지군 하류하천 영향평가)

  • Hwang, Soon-Ho;Kang, Moon-Seong;Kim, Ji-Hye;Song, Jung-Hun;Jun, Sang-Min;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.103-111
    • /
    • 2012
  • Works for dam heightening plan have dual purposes: flood disaster prevention by securing additional storage volume and river ecosystem conservation by supplying stream maintenance flow. Now, the dam heightening project is in progress and there are 93 dam heightened reservoir. After the dam heightening project, 2.2 hundred million ton of flood control volume in reservoirs will be secured. Thus it is necessary to evaluate the effects of the dam heightening project on watershed hydrology and stream hydraulics, and resulting flood damages. This study was aimed to assess the impact of outflow from the dam heightened reservoir group on the Whangryong river design flood. The HEC-HMS (Hydrologic Engineering Center-Hydrologic Modeling System) model was used for estimating flood discharge, while HEC-5 (Hydrologic Engineering Center-5) was used for reservoir routing. This study analysed flood reduction effect on 100yr and 200yr return periods about the before and after heightening of agricultural dams. Based on the results of this study, the reduction of flood peak discharge at downstream of the reservoir group was estimated to be about 41% and 53% for 100yr and 200yr frequencies, respectively.

Flood Impact Pressure Analysis of Vertical Wall Structures using PLIC-VOF Method with Lagrangian Advection Algorithm

  • Phan, Hoang-Nam;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.675-682
    • /
    • 2010
  • The flood impact pressure acting on a vertical wall resulting from a dam-breaking problem is simulated using a navier-Stokes(N-S) solver. The N-S solver uses Eulerian Finite Volume Method(FVM) along with Volume Of Fluid(VOF) method for 2-D incompressible free surface flows. A Split Lagrangian Advection(SLA) scheme for VOF method is implemented in this paper. The SLA scheme is developed based on an algorithm of Piecewise Linear Interface Calculation(PLIC). The coupling between the continuity and momentum equations is affected by using a well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Several two-dimensional numerical simulations of the dam-breaking problem are presented to validate the accuracy and demonstrate the capability of the present algorithm. The significance of the time step and grid resolution are also discussed. The computational results are compared with experimental data and with computations by other numerical methods. The results showed a favorable agreement of water impact pressure as well as the global fluid motion.

Application of Bayesian Networks for Flood Risk Analysis (베이지안 네트워크를 적용한 홍수 위험도 분석)

  • SunWoo, Woo-Yeon;Lee, Kil-Seong;Chung, Eun-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.467-467
    • /
    • 2012
  • As the features of recent flood are spatially concentrated, loss of life and property increase by the impact of climate change. In addition to this the public interest in water control information is increased and socially reasonable justification of water control policy is needed. It is necessary to estimate the flood risk in order to let people know the status of flood control and establish flood control policy. For accurate flood risk analysis, we should consider inter-relation between causal factors of flood damage. Hence, flood risk analysis should be applied to interdependence of the factors selected. The Bayesian networks are ideally suited to assist decision-making in situations where there is uncertainty in the data and where the variables are highly interlinked. In this research, to provide more proper water control information the flood risk analysis is performed using the Bayesian networks to handle uncertainty and dependency among 13 specific proxy variables.

  • PDF

A Study on Hydraulic Stable Analysis of The Natural Small River (친환경 소하천의 수리적 안정성 분석에 관한 연구)

  • Kim, Tae-Kyoung;Rhee, Kyoung-Hoon;Sun, Byoung-Jin;Choi, Cheong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.3
    • /
    • pp.187-194
    • /
    • 2007
  • It started road constructions around river in 1990s. These maintenances concentrate on city river. Because river lives no living things and men don't come near there. But in spite of these river environment go to rack, river maintenances still keep on using preexistence method since 1990s. Only a part of city river environment maintenances consider environmental ability of passive river, river maintenance of a purpose of flood control still don't consider in the concrete. Because propulsion device that consider environment ability of passive river and possible application techniques don't complete. In accordance, A natural river maintenance needs absolutly a series of river projects. Because a natural river maintenance prevents a damage of environment ability. This study is to assume the flood really happened and to carry out the flood damage simulation needed in overflow simulation about the inundated zone. Also, This study examine unstable part about the hydraulic characteristic as velocities, stream power, shear, hydraulic depth, flow area in basin. And this study applied the HEC-RAS(river analysis system) model to predict flood overflow in youngsan river basin. Project flood is used the return period 100 year and inputed data that was calculated in intensity figures of illumination.

VRS-GPS Measure of Typhoon Surge Flood Determinedin Busan Coastal Topography (부산 연안지형 VRS-GPS 계측을 통한 태풍해일 침수예측)

  • Kim, Ga-Ya;Jung, Kwang-Hyo;Kim, Jeong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • A coastal flood area was predicted using the empirical superposition of the typhoon surge level and typhoon wave height along the Busan coastal area. The historical typhoon damages were reviewed, and the coastal topography was measured using VRS-GPS. A FEMA formula was applied to estimate the coastal flood area in a typhoon case when the measured and predicted data of typhoon waves are not available. The results in the area of Haeundae beach and Gwangalli beach were verified using the flood area data from the case of Typhoon Maemi (2003). If a Hurricane Katrina class typhoon were to pass through the Maemi trajectory, the areathat would be flooded along theBusan coastal area was predicted and compared with the results of the Maemi case. Because of the lack of ocean environment data such as data for the sea level, waves, bathymetry, wind, pressure, etc., it is hard to improve the prediction accuracy for the coastal flood area in the typhoon case, which could be reflected in the policy to mitigate a typhoon's impact. This paper discusses the kinds of ocean environment information that is needed to predict a typhoon's impact with better accuracy.