• Title/Summary/Keyword: Flood discharge

Search Result 651, Processing Time 0.028 seconds

Analyzing on the cause of downstream submergence damages in rural areas with dam discharge using dam management data

  • Sung-Wook Yun;Chan Yu
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.331-347
    • /
    • 2023
  • The downstream submergence damages caused during the flood season in 2020, around the Yongdam-dam and five other sites, were analyzed using related dam management data. Hourly- and daily-data were collected from public national websites and to conduct various analyses, such as autocorrelation, partial-correlation, stationary test, trend test, Granger causality, Rescaled analysis, and principal statistical analysis, to find the cause of the catastrophic damages in 2020. The damage surrounding the Yongdam-dam in 2020 was confirmed to be caused by mis-management of the flood season water level. A similar pattern was found downstream of the Namgang- and Hapcheon-dams, however the damage caused via discharges from these dams in same year is uncertain. Conversely, a different pattern from that of the Yongdam-dam was seen in the areas downstream of Sumjingang- and Daecheongdams, in which the management of the flood season water level appeared appropriate and hence, the damages is assumed to have occurred via the increase in the absolute discharge amount from the dams and flood control capacity leakage of the downstream river. Because of the non-stationarity of the management data, we adapted the wavelet transform analysis to observe the behaviors of the dam management data in detail. Based on the results, an increasing trend in the discharge amount was observed from the dams after the year 2000, which may serve as a warning about similar trends in the future. Therefore, additional and continuous research on downstream safety against dam discharges is necessary.

Analysis of Loop-Rating Curve in a Gravel and Rock-bed Mountain Stream (자갈 및 암반 하상 산지하천의 고리형 수위-유량 관계 분석)

  • Kim, Dong-Su;Yang, Sung-Kee;Yu, Kwon-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.853-860
    • /
    • 2012
  • It is well-known that loop effect of the stage-discharge relationship is formulated based on many field observations especially for the sand rivers. Theoretical understandings of the loop effect for the sand rivers have been widely provided, based on the facts that it is driven by the flood wave propagation and bed form changes over the given flood period. However, very few theoretical studies or field observations associated with loop-rating curves in the gravel or rock-bed mountain streams have been attempted so far, due particularly to the difficulties in the accurate discharge measurement during the flood in such field conditions. The present paper aims to report a unique loop-rating curve measured at a gravel and rock-bed mountain stream based on the flood discharge observation acquired during the typhoon, Muifa that passed nearby Jeju Island in summer of 2011. As velocity instrumentation, a non-intrusive Surface Velocity Doppler Radar to be suitable for the flood discharge measurement was utilized, and discharges were consecutively measured for every hour. Interestingly, the authors found that the hysteresis of the loop-rating curve was adverse compared to the typical trend of the sand bed streams, which means that the discharge of the rising limb is smaller than the falling limb at the same stage. We carefully speculate that the adverse trend of the loop-rating curve in the gravel bed was caused by the bed resistance change that works differently from the sand bed case.

Verification about Threshold Discharge Computation using GIUH on ungauged small basin (지형학적순간단위도를 이용한 미계측 소유역의 한계유출량 산정 검증)

  • Choi Hyun;Lee Sang-Jin
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.15-27
    • /
    • 2006
  • This paper is about the threshold discharge computation using GIUH(Geomorphoclimatic Instantaneous Unit Hydrograph) on ungauged small basin. GIUH is one of the possible approaches to predicting the hydrograph characteristics. This study is calculated the various ways which are hydrologic characteristics, bankfull flows, unit peak flows(the Clark, the Nakayasu and the S.C.S) as well as threshold runoffs on about $5km^2$ scale at Kyungbuk gampo in subbasin. We are estimated propriety that peak discharge calculated the GIUH from acquiring data by GIS(Geographic Information System) compared to observed peak discharge. And, the threshold discharge was calculated by NRCS(Natural Resources Conservation Service) for a flash flood standard rainfall.

  • PDF

An Estimation of the Peak Flood Discharges Based on the Mean Daily Discharges during a Flood Event (홍수사상별 일평균유량 자료로부터의 참두홍수량 산정)

  • 원석연;윤용남
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.59-65
    • /
    • 1993
  • In the present study the methods proposed by Fuller and Sangal were evaluated to estimate the peak flood discharge based on the mean daily discharges during a flood period. The total of 198 flood events observed at seven stage gauging stations in the Han River basin were analyzed. The result showed that the peak flood discharges estimated based on the mean daily flows have a relatively high correlation with the observed peak floods. Hence, a regionalized relation and method is proposed for a possible application to estimate the peak flood discharges at the stage gauging stations with no hourly flood stage data, but with the mean daily stages.

  • PDF

Optimal Flood Control Volume in the Irrigation Reservoir (관개저수지의 적정 홍수조절용량 설정방법)

  • 김태철;문종필;민진우;이훈구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.81-91
    • /
    • 1998
  • Water level of irrigation reservoir during the flood season could be kept to a certain level, so called, flood control level by releasing the flood inflow in advance in order to reduce the peak discharge of next coming flood and the damage of inundation. Concept of restriction intensity of water supply was introduced to evaluate the influence of flood control volume on the irrigation water supply. Restriction intensity can be calculated by multiplying the ratio of restriction to the days of restriction which are obtained from the operation rule curve and daily water level of irrigation reservoir and it has the dimension of % day. The method of restriction intensity was applied to the Yedang irrigation reservoir with the observed data of 30 years to review whether the present flood control volume is reasonable or not, and suggest the optimal flood control volume, if possible.

  • PDF

Multipurpose Dam Operation Models for Flood Control Using Fuzzy Control Technique ( II ) - Simulation of Historical Flood Events - (퍼지제어모형을 이용한 다목적 댐의 홍수조절모형 (II) - 과거홍수사상에 대한 적용 -)

  • Shim, Jae-Hyun;Kim, Ji-Tae;Cho, Won-Cheol;Kim, Jin-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.41-50
    • /
    • 2004
  • The objective of this study is to investigate the feasibility of the developed Fuzzy control techniques in dam operation. The simulated results for the 1984, 1990, and 1995 flood events are compared with historical operation results in the view of flood control and disaster prevention. The three models developed in this study determine the outflows based on the two conditions the first one is to consider only two inputs such as reservoir water level and inflow, for operation of the existing situations, the second one is that the possible maximum discharge from each dam does not exceed the allowable design maximum discharge for disaster prevention in downstream area. As the results, it was shown that the suggested models based on Fuzzy control technique could reduce both the peak water level and the maximum peak discharge compared with the historical operation results.

Optimal Gate Operation and Forecasting of Innundation Area in the Irrigation Reservoir (관개저수지의 최적수문조작과 침수구역 예측)

  • 문종필;엄민용;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.486-492
    • /
    • 1999
  • One of the purpose of the reservoir operation is minimizing theinnudation area in the downstream reaches during flood period.l To execute the gate operation properly , it requires lots of real-time data such as rainfall, reservoir level, and water level in the downstrea. Gate operation model was developed with the flood discharge obtained from real-time flood forecasting model and the criterion prepared from the past history of gate operation. Water level in the downstream would be increased by the releasing discharge from the spillway and the area of paddy land flooded in a certain detph and time would be estimated usnig GIS map. Gate operation model was applied to the Yedang reservoir, and the flooded area, depth and time in the paddy land was estimaged.

  • PDF

Water Balance Estimate of LID Technique for Circulating Urban Design (순환형 도시계획에 따른 LID기술의 물수지 분석)

  • Kang, Sung-Hee;Heo, Woo-Myung;Kang, Sang-Hyeok
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1065-1073
    • /
    • 2015
  • Urbanization can be significantly affected the hydrologic cycle by increasing flood discharge and heat flux. In order to mitigate these modifications in urban areas, Low Impact Development (LID) technique has been designed and applied in Korea. In order to estimate runoff reduction rate using SWMM LID model, the characteristics of five LID techniques was firstly analyzed for water balance. Vegetated swale and green roof were not reduce flood discharge nor infiltration amount. On the other hand, porous pavement and infiltration trench were captured by infiltration function. The flood reduction rate with LID is substantially affected by their structures and properties, e.g., the percentage of the area installed with LID components and the percentage of the drainage area of the LID components.

Optimal Flood Control System for Irrigation Reservoir (관개저수지의 최적 홍수관리방안)

  • 문종필;민진우;김영식;박승기;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.311-317
    • /
    • 1998
  • Recently irrigation reservoir has been developed to perform multipurpose function. To get a maximum effect it requires to establish optimal management system for irrigation reservoir in drought and flood season. Especially we dealt with optimal flood control system for irrigation reservoir in this study. This system consists of real-time rainfall data via online system, real-time flood forecasted by SCS method in hourly basis, storage volume by water balance equation, optimal releasing discharge from the gate, the water level in right downstream, and calculation of innundated area, depth, and time using GIS, and amount of flood damages. If we consider the relation of these sub module reasonably, we can reach the optimal flood control to minimize flood damage

  • PDF

Forecasting the Flood Inflow into Irrigation Reservoir (관개저수지의 홍수유입량 예측)

  • 문종필;엄민용;박철동;김태얼
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.512-518
    • /
    • 1999
  • Recently rainfall and water evel are monitored via on -line system in real-time bases. We applied the on-line system to get the rainfall and waterlevel data for the development of the real-time flood forecasting model based on SCS method in hourly bases. Main parameters for the model calibration are concentration time of flood and soil moisture condition in the watershed. Other parameters of the model are based on SCS TR-%% and DAWAST model. Simplex method is used for promoting the accuracy of parameter estimation. The basic concept of the model is minimizing the error range between forcasted flood inflow and actual flood inflow, and accurately forecasting the flood discharge some hours in advance depending on the concentration time. The flood forecasting model developed was applied to the Yedang and Topjung reservoir.

  • PDF