• Title/Summary/Keyword: Flood damage analysis

Search Result 381, Processing Time 0.024 seconds

Development of a Flood Disaster Evacuation Map Using Two-dimensional Flood Analysis and BIM Technology (2차원 침수해석과 BIM 기술을 활용한 홍수재난 대피지도 작성)

  • Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.53-63
    • /
    • 2020
  • In this study, the two-dimensional flow analysis model Hydro_AS-2D model was used to simulate the situation of flooding in Seongsangu and Uichang-gu in Changwon in the event of rising sea levels and extreme flooding, and the results were expressed on three-dimensional topography and the optimal evacuation path was derived using BIM technology. Climate change significantly affects two factors in terms of flood damage: rising sea levels and increasing extreme rainfall ideas. The rise in sea level itself can not only have the effect of flooding coastal areas and causing flooding, but it also raises the base flood level of the stream, causing the rise of the flood level throughout the stream. In this study, the rise of sea level by climate change, the rise of sea level by storm tidal wave by typhoon, and the extreme rainfall by typhoon were set as simulated conditions. The three-dimensional spatial information of the entire basin was constructed using the information of topographical space in Changwon and the information of the river crossing in the basic plan for river refurbishment. Using BIM technology, the target area was constructed as a three-dimensional urban information model that had information such as the building's height and location of the shelter on top of the three-dimensional topographical information, and the results of the numerical model were expressed on this model and used for analysis for evacuation planning. In the event of flooding, the escape route is determined by an algorithm that sets the path to the shelter according to changes in the inundation range over time, and the set path is expressed on intuitive three-dimensional spatial information and provided to the user.

Modeling Rainfall - Runoff Simulation System of JinWie Watershed using GIS based HEC-HMS Model (GIS 기반의 HEC - HMS를 이용한 진위천 유역의 강우-유출모형 구성)

  • Kim, Sang-Ho;Park, Min-Ji;Kang, Soo-Man;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.119-128
    • /
    • 2006
  • The purpose of this study is to prepare input data for FIA (flood inundation analysis) and FDA (flood damage assessment) through rainfall-runoff simulation by HEC-HMS model. For Jinwie watershed ($737.7km^2$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. The results will be used for river routing and inundation propagation analysis for various flood scenarios.

  • PDF

Development and Hydraulic Characteristics of Continuous Block System in River Bank Protection (I) - Development and Application Review through Hydraulic Model Test - (일체형 식생호안블록 시스템 개발 및 수리특성 연구(I) -일체형 호안블록 개발 및 수리모형실험을 통한 적용성 검토-)

  • Jang, SukHwan
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.87-97
    • /
    • 2008
  • This research focused on development and application feasibility for the coalesced continuous block system in river bank protection. Most of block systems in river bank are pre cast type and have some difficulties against high velocity flood condition or high pressure load, however, the continuous block system can be applied to flood damage recover as well as environmental vegetation block system in river bank. For the application review and analysis of hydraulic condition for this block system, hydraulic physical modeling was carried out. The physical model was built as a scale of 1:50 by Froude similitude measuring the water levels and the water velocities for vegetation application or not. In consequence, the water velocities were observed to decrease meanly 10.1%, and the water depths were to increase meanly 17.8% in case of the of design flood, $Q=200m^3/sec$. To verify the hydraulic physical modeling, the numerical modeling should be conducted for a close examination of vegetation application by one or two dimensional numerical analysis as a next study.

  • PDF

A Study on the Analysis of Flood-related Characters in Sanhae-gyeong and Ojang Samgyeong (『산해경·오장산경』 수해 캐릭터 유형 특성에 관한 분석 연구)

  • ENPENG-WU;Hee-Kyung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.355-362
    • /
    • 2023
  • Characters in visual media have different symbolic meanings depending on their orientations or roles. 『山海經』 is a fantasy novel written around the 3rd or 4th century BC., and the characters in the classical Chinese novel have various meanings and symbols, such as disasters, wealth, diseases, etc., according to their types. The symbolism of animals that the Chinese think of, the symbolism of characters in fantasy novels, and the morphological analysis are necessary elements in the development of characters and the film industry in China. This study analyzed the images of characters as follows, focusing on classical Chinese fantasy novels 『山海经』, 『山海经圖象全體』, and 『山海經圖』 and the fantasy novels of the Qing Dynasty 『山海经存』 and 『山海经圖錄』. First, the shapes of characters are slightly different in illustration images. Second, Among 453 characters in 山海經, there are a total of 8 characters related to flood damage, such as floods, rainy season, etc.: 'Jangwoo', 'Hapyu', 'Hwasa', 'Yeongryeong', 'Buje', 'Seungwoo', 'Manman', and 'Naeo' Third, it can be seen that the characters are creative ones that are combined with objects and animals and plants, apart from the symbolic meanings of real animals and characters in 山海經. It is believed that the continuous analysis of the characters in 山海經 will enable them to be widely used in the film industry.

Assessment of Flood Vulnerability to Climate Change Using Fuzzy Model and GIS in Seoul (퍼지모형과 GIS를 활용한 기후변화 홍수취약성 평가 - 서울시 사례를 중심으로 -)

  • Kang, Jung-Eun;Lee, Moung-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.119-136
    • /
    • 2012
  • The goal of this study is to apply the IPCC(Intergovernmental Panel on Climate Change) concept of vulnerability to climate change and verify the use of a combination of vulnerability index and fuzzy logic to flood vulnerability analysis and mapping in Seoul using GIS. In order to achieve this goal, this study identified indicators influencing floods based on literature review. We include indicators of exposure to climate(daily max rainfall, days of 80mm over), sensitivity(slope, geological, average DEM, impermeability layer, topography and drainage), and adaptive capacity(retarding basin and green-infra). Also, this research used fuzzy model for aggregating indicators, and utilized frequency ratio to decide fuzzy membership values. Results show that the number of days of precipitation above 80mm, the distance from river and impervious surface have comparatively strong influence on flood damage. Furthermore, when precipitation is over 269mm, areas with scare flood mitigation capacities, industrial land use, elevation of 16~20m, within 50m distance from rivers are quite vulnerable to floods. Yeongdeungpo-gu, Yongsan-gu, Mapo-gu include comparatively large vulnerable areas. This study improved previous flood vulnerability assessment methodology by adopting fuzzy model. Also, vulnerability map provides meaningful information for decision makers regarding priority areas for implementing flood mitigation policies.

Analysis of Forest Fire Damage Areas Using Spectral Reflectance of the Vegetation (식생의 분광 반사특성을 이용한 산불 피해지 분석)

  • Choi, Seung-Pil;Kim, Dong-Hee;Ryutaro, Tateishi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.89-94
    • /
    • 2006
  • Forest damage is a worldwide issue and specially, a forest fire involves damage to itself and causes secondary damage such as a flood etc. However, actually, clear analysis on forest fire damage can be hardly conducted due to difficulty in approaching a forest fire and quite a long period of time for analysis. To overcome such difficulty, recently, forest fire damage has been actively investigated with satellite image data, but it is also difficult to obtain satellite image data fitted to the time a forest fire occurred. In addition, it is burdensome to verify accuracy of the obtained image. Therefore, this study was attempted to look into the damaged districts from forest fires by reference to spectroradiometric characteristics of the obtained vegetation with a spectroradiometer as preliminary work to use satellite image data. To begin with, the researcher analyzed the field survey data each measured 3 months and 6 months after occurrence of a forest fire by judging the extent of the damage through visual observation and using a spectroradiometer in order to investigate any potential errors arising out of one-time visual observation. Besides, in this study, groups showing possibilities that trees might be restored to life and wither to death could be classified on the sampling points where forest fire damage is minor.

  • PDF

On Estimation of the sentence "Two thirds of them died and seven out of ten died of cold damage" ("기사망자(其死亡者) 삼분유이(三分有二) 상한십거기칠(傷寒十居其七)"에 대한 소고(小考) - 상한(傷寒)에 의한 질환(疾患)-특이(特異) 사망률(死亡率을 중심(中心)으로 -)

  • Eom, Seok-Ki;Kim, Se-Hyun;Eo, Wan-Kyu
    • Journal of Korean Medical classics
    • /
    • v.21 no.4
    • /
    • pp.75-83
    • /
    • 2008
  • Based on the sentence "The number of my family member and relatives reached around 200, but since the first year of Geonan(建安) era, two thirds of them died and seven out of ten died of cold damage in less than ten years" in Sanghanjapbyeongron(Treatise on Cold Damage and Miscellaneous Diseases), which is allegedly known to be written by Jangnunggyeong(張仲景), we analyzed the sentence by three factors of time, location and people. These factors are used in the investigation of the disease outbreak, and through this analysis, following conclusions were made. 1. Approximate 10 year crude mortality rate since A.D 196(the first yea of Geonan era) in Jangsa(長沙) province was 67 out of 100 in the population. Approximate 10 year disease-specific mortality rate of cold damage since A.D 196(the first yea of Geonan era) in Jangsa(長沙) province was 47 out of 100 in the population. Regardless of age, gender or other demographic variables, approximate 10 year proportionate mortality ratio since A.D 196(the first yea of Geonan era) in Jangsa province was 70.2%, which lead to the assumption that 70% of death is cold-damage related. 2. Increased disease-specific mortality rate by cold damage in Jangsa(長沙) province for about 10 years since A.D 196(the first yea of Geonan era), and followed increased crude mortality rate in the population, threatened the stability of nation or local government. This is due to the repeated war in late Han Dynasty with political chaos and repeated flood caused by geographical disadvantage in Jangsa province.

  • PDF

Cause Analysis of 2006 Concentrated Heavy Rain Which Occurred in InJe-Gun (2006년 인제군 집중호우의 원인 분석)

  • Bae, Sun-Hak
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.4
    • /
    • pp.396-408
    • /
    • 2007
  • Natural disasters occurred in Inje and Pyeongchang in 2006 show that unusual changes of weather, which Korean Peninsula has not experienced before, are becoming quite common phenomenon nowadays. In future we have to proceed in the direction of preventing such disasters so as to minimize the damage, by analyzing character and cause of various disasters whenever necessary, performing modeling in simulated real world, and applying the results in disaster prevention policy next year. Applying GIS in this process, the best information for decision-making can be offered. This study has also progressed proceeding from such point of view. The results of this study show that local concentrated heavy rain, caused by the primary topographical factor in the Sulak mountain region, was the main cause of flood disaster occurred in Inje-Gun area in July of 2006. Local concentrated heavy rain is greatly affected by topography. Namely, if there is a mountainous region behind, the area opposite to the direction of rain clouds motion will have high possibility of local concentrated heavy rain.

  • PDF

Developing Coast Vulnerable Area Information Management System using Web GIS (Web GIS를 이용한 연안위험취약지역 정보시스템 구축)

  • Pak, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.155-164
    • /
    • 2005
  • The coast has been known as very vulnerable area. This area has nature disasters such as typhoon, tidal wave, flood and storm almost every year. In this study, coast vulnerable area information management system was developed to manage the coastal facilities and vulnerable area through Web GIS. This system is able to visualize the damage area and support the official work related to coast as efficient DSS(Decision Supporting System). Moreover, the foundation for domestic coast information management is expected by acquiring less cost and time. For this, GIS DB was first constructed by acquiring damage factor data such as typhoon, tidal wave, flood and storm. Then GIS analysis methods and high resolution satellite images are used to possibly present the results of retrieve as table, map, graph, inundation simulation in real time.

  • PDF

Inundation Analysis Considering Water Waves and Storm Surge in the Coastal Zone (연안역에서 고파랑과 폭풍해일을 고려한 침수해석)

  • Kim, Do-Sam;Kim, Ji-Min;Lee, Gwang-Ho;Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.35-41
    • /
    • 2007
  • In general, coastal damage is mostly occurred by the action of complex factors, like severe water waves. If the maximum storm surge height combines with high tide, severe water waves will overflow coastal structures. Consequently, it can be the cause of lost lives and severe property damage. In this study, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast in front of Noksan industrial complex, Korea. Moreover, the shallow water wave is estimated by applying wind field, design water level considering storm surge height for typhoon Maemi to SWAN model. Under the condition of shallow water wave, obtained by the SWAN model, the wave overtopping rate for the dike in front of Noksan industrial complex is calculated a hydraulic model test. Finally, based on the calculated wave-overtopping rate, the inundation regime for Noksan industrial complex was predicted. And, numerically predicted inundation regimes and depths are compared with results in a field survey, and the results agree fairly well. Therefore, the inundation modelthis study is a useful tool for predicting inundation regime, due to the coastal flood of severe water wave.