• Title/Summary/Keyword: Flood control reservoir

Search Result 180, Processing Time 0.031 seconds

Case Study for Setting Operation Rules to Irrigation Reservoirs (농업용 저수지 운영률 설정 사례 연구)

  • Noh, Jae-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.837-841
    • /
    • 2010
  • 농업용 저수지는 주로 관개용수를 공급하는 역할을 해 왔으나 4대강 살리기 사업의 저수지 둑 높이기로 확보한 저수량을 이용하여 하류하천의 유지유량 공급과 홍수조절용량으로 이용하기 위한 저수지의 운영률 설정을 요구하고 있다. 관개용수를 공급하면서 하천유지유량을 상시공급, 유량부족시 공급, 30일, 60일, 90일 집중 공급 등 시나리오별 공급효과와 홍수기 홍수조절용량을 단계별로 설정하여 각 운영효과를 분석해 저수지 운영률을 합리적으로 설정할 수 있는 방법을 검토하였으며, 탑정저수지와 미호저수지에 대해 적용한 사례를 제시하였다.

  • PDF

Assessment of Environmental Flow Impacts for the Gosam Reservoir According to Climate Change (기후변화에 따른 고삼저수지의 환경유량 영향평가)

  • Yoon, Tae Hyung;Kang, Ho Young;Kim, Jong Suk;Moon, Young Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.93-100
    • /
    • 2016
  • This study conducted a quantitative assessment on the environmental flows associated with climate change in the Gosam Reservoir, Korea. The application of RCP 8.5 climate change scenario has found that the peak value of High Flow Pulses has increased by 36.0 % on average compared to historical data (2001 ~ 2010), which is likely to cause disadvantage on flood control and management but the increase in peak value is expected to make a positive impact on resolving the issue of green algal blooms, promoting vegetation in surrounding areas and encouraging spawning and providing habitats for native species by releasing a larger amount of landslides as well as organic matters than the past. However, the decreasing pattern of the peak value of High Flow Pulses is quite apparent with the trend of delay on the occurrence time of peak value, necessitating a long-term impact analysis. The peak value of Large Floods shows a clear sign of decrease against climate change scenario, which is expected to lead to changes in fish species caused by degraded quality of water and decreasing habitats. A quicker occurrence of Small Floods is also expected to make an impact on the growth cycle of aquatic plants, and the reduction in occurrence frequency of Extreme Low Flows is to contribute to increasing the population of and raising the survival rate of native fish, greatly improving the aquatic ecosystem. The results of this study are expected to be useful to establish the water environment and ecological system in adapting or responding to climate change.

Development of the Pre-Release Simulation System Using Generic Agricultural System Simulator(GASS) (범용적 농업 시스템 시뮬레이터(GASS)를 이용한 예비방류 모의 시스템의 개발)

  • Song, Sang-Ho;Lee, Jeong-Jae;Kim, Han-Joong;Yi, Ho-Jae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.539-542
    • /
    • 2003
  • In South Korea, flooding is controlled with large or small reservoirs scattered spatially over the territory. Because recent unexpected hard-rain events requires more flood control capacities, the pre-release system is considered with the most economical alternative. In this case time and volume of discharge should be determined by the simulation. But, existing pre-release simulation system has the problem of specificity. Therefore, GASS is considered to estimate the pre-release time and volume with different configurations of pre-release system. This paper shows that pre-release simulation system could be constructed with arranging GASAtmosphere, GASWatershed, Reservoir, Gate components using GASS. It is also shows that GASS could be used as a foundation for constructing pre-release simulation system that is easy to use and is flexible to reflect the changing configurations of reservoir systems.

  • PDF

Drought Monitoring with Indexed Sequential Modeling

  • Kim, Hung-Soo;Yoon, Yong-Nam
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.125-136
    • /
    • 1997
  • The simulation techniques of hydrologic data series have develped for the purposes of the design of water resources system, the optimization of reservoir operation, and the design of flood control of reservoir, etc. While the stochastic models are usually used in most analysis of water resources fields for the generation of data sequences, the indexed sequential modeling (ISM) method based on generation of a series of overlapping short-term flow sequences directly from the historical record has been used for the data generation in the western USA since the early of 1980s. It was reported that the reliable results by ISM were obtained in practical applications. In this study, we generate annual inflow series at a location of Hong Cheon Dam site by using ISM method and autoregressive, order-1 model (AR(1)), and estimate the drought characteristics for the comparison aim between ISM and AR(1).

  • PDF

Unsteady Flow Model Including a Dam Operation Rule for Flood Control as Internal Boundary Condition (홍수시 댐 운영방안을 내부 경계조건으로 포함하는 부정류 계산모형)

  • Yu, Myoung-Kwan;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1043-1054
    • /
    • 2004
  • An unsteady flow model for channel network including various internal boundaries if developed. It is a multiply-connected network model based on the Preissmann's four-point scheme and the Newton-Raphson method, where looped double-sweep algorithm is used. The model is capable of simulating flow through hydraulic structures such as dams and submerged weirs. It can also simulate automatic reservoir operation method (Auto ROM) for flood control, that is to maintain a target water level, by incorporating the strategy to the unsteady flow model as internal boundary condition. The model is applied to the Han River system that includes the downstream reaches of Choongju dam and Hwacheon dam as well as the downstream reach of the Paldang dam. Roughness coefficient for the downstream reach of Choongju dam is estimated. Automatic ROM is presumed for the Paldang, Chungpyung, Euiam, and Choonchun dams. The model is tested using historical flood records, and the flood control strategy is successfully simulated.

Estimation of CO2 Emission from a Eutrophic Reservoir in Temperate Region (온대지역 부영양 저수지의 이산화탄소 배출량 산정)

  • Chung, Se-Woong;Yoo, Ji-Su;Park, Hyung-Seok;Schladow, S. Geoffrey
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.433-441
    • /
    • 2016
  • Many large dams have been constructed for water supply, irrigation, flood control and hydropower in Korea for the last century. Meanwhile, recent studies indicated that the artificial reservoirs impounded by these dams are major sources of carbon dioxide (CO2) to the atmosphere and relevant to global budget of green house gases. However, limited information is available on the seasonal variations of CO2 evasion from the reservoirs located in the temperate monsoon regions including Korea. The objectives of this study were to estimate daily Net Atmospheric Flux (NAF) of CO2 in Daecheong Reservoir located in Geum River basin of Korea, and analyze the influencing parameters that characterize the variation of NAF. Daily pH and alkalinity (Alk) data collected in wet year (2012) and dry year (2013) were used for estimating the NAFs in the reservoir. The dissolved inorganic carbon (DIC) was computed using the pH and Alk measurements supposing an equilibrium state among the carbonate species. The results showed seasonal variations of NAF; negative NAFs from May to October when the primary production of the reservoir increased with water temperature increase, while positive NAF for the rest of the period. Overall the reservoir acted as sources of CO2 to the atmosphere. The estimated NAFs were 2,590 and 771 mg CO2 m-2d-1 in 2012 and 2013, respectively, indicating that the NAFs vary a large extent for different hydrological years. Statistical analysis indicated that the NAFs are negatively correlated to pH, water temperature, and Chl-a concentration of the reservoir.

Laterally-Averaged Two-Dimensional Hydrodynamic and Turbidity Modeling for the Downstream of Yongdam Dam (용담댐 하류하천의 횡방향 평균 2차원 수리·탁수모델링)

  • Kim, Yu Kyung;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.710-718
    • /
    • 2011
  • An integrated water quality management of reservoir and river would be required when the quality of downstream river water is affected by the discharge of upstream dam. In particular, for the control of downstream turbidity during flood events, the integrated modeling of reservoir and river is effective approach. This work was aimed to develop a laterally-averaged two-dimensional hydrodynamic and water quality model (CE-QUAL-W2), by which water quality can be predicted in the downstream of Yongdam dam in conjunction with the reservoir model, and to validate the model under two different hydrological conditions; wet year (2005) and drought year (2010). The model results clearly showed that the simulated data regarding water elevation and suspended solid (SS) concentration are well corresponded with the measured data. In addition, the variation of SS concentration as a function of time was effectively simulated along the river stations with the developed model. Consequently, the developed model can be effectively applied for the integrated water quality management of Yongdam dam and downstream river.

Effect of Cultivation Activity in Daecheong Lake Flood Control Site on Water Quality (대청호 홍수조절지 내 경작활동이 수질에 미치는 영향)

  • Choi, Hyeseon;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2020
  • The excessive use of fertilizer and compost in agricultural land increases the accumulation of nutrients in soil. The surplus nutrients in soil transported through surface and sub-surface flow can lead to water pollution problems and algal bloom. Moreover, nutrient accumulation and continuous crop cultivation changes the physical structure of the soil, which increases the potential of nutrient. The cultivation in the Daecheong Lake reservoir area may have a direct effect on the lake's water quality due to leaching and releasing of nutrients when water level rises. This research was carried out to analyze the physical and chemical properties of soil in the agricultural areas surrounding Daecheong Dam reservoir to provide basic data available for the establishment of Daecheong Lake water quality management measures. The soil of the Daecheong Lake reservoir was classified as sandy Loam, where surplus nutrients can be transported. Chemical compositions in the soil were found to be significantly affected by use of different fertilizer amounts. Nutrient outflow occurred during spring rainfall events from the rice paddy fields, whereas excess nutrients from summer to fall seasons originated from dry paddy fields. Nutrient outflow from dry paddy fields is mainly from sub-surface flow. Organic agricultural wastes from agricultural land and excessive vegetation inside the river was also evaluated to contribute to the increase in organic matter and nutrients of the river. The results can be used to select the priority management area designation and management techniques in the Daecheong Lake for water quality improvement.

A Study on the Potential of Agricultural Water and Environmental Flow Supply according to Regulating Lower Control Storage Rate for the Irrigation Reservoir (농업용 저수지의 하한 관리 저수율 설정에 따른 농업용수 및 환경용수 공급 가능성 고찰)

  • Jeong, Jiyeon;Jeung, Minhyuk;Beom, Jina;Park, Minkyeong;Lee, Jaenam;Yoo, Seung-Hwan;Yoon, Kwang-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.21-33
    • /
    • 2023
  • While the main purpose of irrigation reservoirs is to supply agricultural water, the needs of environmental flow and flood control has been expanded. The agricultural reservoirs have been operated in the form of carry-over system until now. Therefore, the supply of agricultural water is difficult when the storage rate is not sufficiently secured after large volume of irrigation. In addition, there are regulation of the upper storage rate for some large reservoirs during the flood season, but lower storage rate is not regulated. Accordingly, this study aims to evaluate the capacity of agricultural water and environmental flow supply by setting the management lower storage rate of reservoir. The changes in the supply of agricultural and environmental flow was simulated according to the three different regulating lower storage rate scenarios. As a result, it was judged effective in terms of water supply managing the lower storage rate up to 30% when the initial storage rate of farming period is above annual average for the Naju reservoir considering existing water management practice. If the lower storage rate would have been controlled above 30%, the supply of agricultural water might be increased and non-effective discharge amount would be decreased compared to other scenarios during dry period of 2016-2018.

Effect of biaxial stress state on seismic fragility of concrete gravity dams

  • Sen, Ufuk;Okeil, Ayman M.
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.285-296
    • /
    • 2020
  • Dams are important structures for management of water supply for irrigation or drinking, flood control, and electricity generation. In seismic regions, the structural safety of concrete gravity dams is important due to the high potential of life and economic loss if they fail. Therefore, the seismic analysis of existing dams in seismically active regions is crucial for predicting responses of dams to ground motions. In this paper, earthquake response of concrete gravity dams is investigated using the finite element (FE) method. The FE model accounts for dam-water-foundation rock interaction by considering compressible water, flexible foundation effects, and absorptive reservoir bottom materials. Several uncertainties regarding structural attributes of the dam and external actions are considered to obtain the fragility curves of the dam-water-foundation rock system. The structural uncertainties are sampled using the Latin Hypercube Sampling method. The Pine Flat Dam in the Central Valley of Fresno County, California, is selected to demonstrate the methodology for several limit states. The fragility curves for base sliding, and excessive deformation limit states are obtained by performing non-linear time history analyses. Tensile cracking including the complex state of stress that occurs in dams was also considered. Normal, Log-Normal and Weibull distribution types are considered as possible fits for fragility curves. It was found that the effect of the minimum principal stress on tensile strength is insignificant. It is also found that the probability of failure of tensile cracking is higher than that for base sliding of the dam. Furthermore, the loss of reservoir control is unlikely for a moderate earthquake.