• Title/Summary/Keyword: Flood Simulation Model

Search Result 415, Processing Time 0.029 seconds

Development of a Coupled Model for the Flood Inundation Simulation (홍수범람모의를 위한 내외수 연계모형 개발)

  • Kim Hyung-Jun;Cho Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1047-1052
    • /
    • 2005
  • The purpose of this study is developing a coupled model for the flood analysis. Firstly, the model(river model) describing the inundation in a river solves the two-dimensional Saint Venant equations with a finite difference method and it is possible moving boundary treatment. The other model(inland model) in developed based on the ILLUDAS model to describe the conveyance capacity of a stormwater sewer system. Finally, a coupled model is applied to a real situation. The newly developed coupled model simulates reasonably the flood event occurred in a river and a inland simultaneously

  • PDF

Synthetic storm sewer network for complex drainage system as used for urban flood simulation

  • Dasallas, Lea;An, Hyunuk;Lee, Seungsoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.142-142
    • /
    • 2021
  • An arbitrary representation of an urban drainage sewer system was devised using a geographic information system (GIS) tool in order to calculate the surface and subsurface flow interaction for simulating urban flood. The proposed methodology is a mean to supplement the unavailability of systematized drainage system using high-resolution digital elevation(DEM) data in under-developed countries. A modified DEM was also developed to represent the flood propagation through buildings and road system from digital surface models (DSM) and barely visible streams in digital terrain models (DTM). The manhole, sewer pipe and storm drain parameters are obtained through field validation and followed the guidelines from the Plumbing law of the Philippines. The flow discharge from surface to the devised sewer pipes through the storm drains are calculated. The resulting flood simulation using the modified DEM was validated using the observed flood inundation during a rainfall event. The proposed methodology for constructing a hypothetical drainage system allows parameter adjustments such as size, elevation, location, slope, etc. which permits the flood depth prediction for variable factors the Plumbing law. The research can therefore be employed to simulate urban flood forecasts that can be utilized from traffic advisories to early warning procedures during extreme rainfall events.

  • PDF

A Study on the Use of Geospatial Information-Based Simulation for Preemptive Response to Water Disasters in Agricultural Land (농경지 수재해 선제적 대응을 위한 공간정보기반 시뮬레이션 활용 연구)

  • Jung, Jae Ho;Kim, Seung Hyun;Kim, Dae Jin;Yang, Seung Weon
    • Smart Media Journal
    • /
    • v.11 no.7
    • /
    • pp.52-60
    • /
    • 2022
  • Due to global warming and changes in the natural environment, flood damage to agricultural land due to wind and flood damage continues. Although disaster prevention projects have been continuously carried out since the founding of the country, progress has been insufficient compared to the sustained period, and huge costs are still being consumed. Therefore, it is necessary to use predictive simulation for pre-emptive response to inundation of farmland. In this paper, a case of immersion analysis simulation using a GIS(Geospatial Information System) based SWMM model was introduced, and the validity was confirmed through the error rate between our simulation result and the results of other models in the US and Korea. In addition, in the direction of using the simulation for agricultural land inundation, we presented various utilization methods to supplement the current agricultural land inundation-based information policy, such as the creation of flood traces. If simulation results from more regions are accumulated in the form of the flood analysis maps in the future, it is expected that they will be able to be utilized in various applications for preemptive response to and prevention of water disasters at the national level.

Development of a Combined Model for Flood Inundation Simulation (홍수범람모의를 위한 내외수 연계모형 개발)

  • Yu, Jae-Hong;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, a numerical model combined by a river model and an inland model developed to simulated a flood event. The river model describing an inundation in a river solves the two-dimensional Saint Venant equations with a finite difference method. The inland model based on the ILLUDAS describes the conveyance capacity of a storm sewer system. The combined model is applied to a real situation. The model simulates reasonably the real flood event occurred in a river and inland simultaneously.

Development of Inundation Flooding Simulation Program for Selecting Optimum Installation Site for Rainwater Infiltration Detention Block (빗물침투저류블록의 설치 최적지 선정을 위한 침수범람 시뮬레이션 프로그램의 개발)

  • Kim, Seongpyo;Lee, Taegyo;Ryu, Jungrim;Park seonmee;Choi, Heeyong;Choi, Hyeonggil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.129-130
    • /
    • 2023
  • This study proposes rainwater infiltration retention blocks as a solution to the flooding problems caused by recent climate change and developed a flood prediction simulation program to select the optimal site for installing rainwater infiltration retention blocks that can minimize damage from floods. By applying the existing 2D flood analysis model G2D and adding a reservoir function, the volume of water before and after installation can be determined through simulation results.

  • PDF

FLO-2D Simulation of the Flood Inundation Zone in the Case of Failure of the Sandae Reservoir Gyeongju, Gyeongbuk (댐붕괴 모형과 FLO-2D를 연동한 산대저수지 붕괴 침수 모의)

  • Go, Dae-hong;Lee, Khil-Ha;Kim, Jin-Man;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.449-458
    • /
    • 2015
  • The compilation of a flood hazard map is an efficient technique in managing areas at risk of flooding in the case of a dam-break. A scenario-based numerical modeling approach is commonly used to compile a flood hazard map related to dam-break and to determine the model parameters that capture peak discharge, including breach formation and progress, which are important in the modeling method. This approach might be considered less reliable if an existing model is used without local validation. In this study, a dam-break model is linked to a routing model to identify flood-risk areas in the case of failure of the Sandae Reservoir Gyeongju, Gyeongbuk. Model parameters are extracted from a DEM, and maps of land use and soil texture. The simulation results are compared with on-site investigations in terms of inundation and depth. The model reproduces the inundation zone with reasonable accuracy.

Evaluation System of Flood Damages using Stream Stage (하천수위에 의한 침수피해 평가 시스템)

  • Kim, Jong-Soon;Lee, Young-Dai;Oh, Kook-Yul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.151-158
    • /
    • 2009
  • Many people have been suffering and loosing their property from inundation due to concentrated rain and massive storm. Although, river banks are strengthened and pumping stations are constructed to protect the life and property of people, the flood damages (disaster)could not be controlled, in fact it is increasing. In USA, CWMS (Corps Water Management System) has very good system of integration of study of rainfall data, computation of stream stage and simulation of flood damages, but there is lack of this type of study and analysis in the domestic context, so we have been facing many difficulties in simulation of flood damages. Therefore, a systematic collecting of data analysis and evaluation of flood damages is necessary. The main objective of this study is to suggest a systematic data collection and evaluation method, which could be useful to prevent the life and property from unusual damages. In this study, the system (Flood Damage Evaluation Model; K-FDEM) is proposed to evaluate the flood damages from rainfall with considering many field parameters.

The optimal operation of reservoir systems during flood season (홍수기 저수지의 최적연계운영)

  • Han, Kun-Yeun;Choi, Hyun-Gu;Kim, Dong-Il;Lee, Kyeong-Teak
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.743-746
    • /
    • 2008
  • Recently, due to the effect of global warming and extreme rainfall, the magnitude of flood disaster and the frequency of flood is rapidly increasing. In order to mitigate the damage of human and property from this kind of meteorological phenomenon and manage water resources scientifically, effective operation of dam and reservoir is very important. In case of Andong dam which was not performed a flood control function needs to develop new types of dam safety management measure because of recent extraordinary flood by typhoons. In case of Andong dam and Imha dam, I am using HEC-5 model in order to apply reservoir simulation. In this case, complex conditions among 100-year floods , 200-year floods and PMF was used. Also, I modified the maximum outflow 3,800m3/s into 3,490m3/s and applied this modified discharge in order to secure freeboard in the downstream. In an analysis that I applied modified outflow by 100-year floods and 200-year floods to, the result showed that river didn't overflow in Andong area but some other places have relatively low freeboard. In the cases that I modified maximum outflow, results showed that freeboard of levee is larger than existed simulation. In the simulation that I applied 200-year floods and PMF to and under a condition connected with PMF, results showed overflowing the levees. Because of the difference between the frequency of dam outflow and the design flood in river, it is required to improve the existed flood plan in the downstream of Andong dam. As a result of this study, the optimal operation of reservoir systems can be proposed to mitigate the flood damage in the downstream of Andong dam and also can be used to establish the flood plans.

  • PDF

TFN model application for hourly flood prediction of small river (소규모 하천의 시간단위 홍수예측을 위한 TFN 모형 적용성 검토)

  • Sung, Ji Youn;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.165-174
    • /
    • 2018
  • The model using time series data can be considered as a flood forecasting model of a small river due to its efficiency for model development and the advantage of rapid simulation for securing predicted time when reliable data are obtained. Transfer Function Noise (TFN) model has been applied hourly flood forecast in Italy, and UK since 1970s, while it has mainly been used for long-term simulations in daily or monthly basis in Korea. Recently, accumulating hydrological data with good quality have made it possible to simulate hourly flood prediction. The purpose of this study is to assess the TFN model applicability that can reflect exogenous variables by combining dynamic system and error term to reduce prediction error for tributary rivers. TFN model with hourly data had better results than result from Storage Function Model (SFM), according to the flood events. And it is expected to expand to similar sized streams in the future.

Application of the weather radar-based quantitative precipitation estimations for flood runoff simulation in a dam watershed (기상레이더 강수량 추정 값의 댐 유역 홍수 유출모의 적용)

  • Cho, Yonghyun;Woo, Sumin;Noh, Joonwoo;Lee, Eulrae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.155-166
    • /
    • 2020
  • In this study, we applied the Radar-AWS Rainrates (RAR), weather radar-based quantitative precipitation estimations (QPEs), to the Yongdam study watershed in order to perform the flood runoff simulation and calculate the inflow of the dam during flood events using hydrologic model. Since the Yongdam study watershed is a representative area of the mountainous terrain in South Korea and has a relatively large number of monitoring stations (water level/flow) and data compared to other dam watershed, an accurate analysis of the time and space variability of radar rainfall in the mountainous dam watershed can be examined in the flood modeling. HEC-HMS, which is a relatively simple model for adopting spatially distributed rainfall, was applied to the hydrological simulations using HEC-GeoHMS and ModClark method with a total of eight independent flood events that occurred during the last five years (2014 to 2018). In addition, two NCL and Python script programs are developed to process the radar-based precipitation data for the use of hydrological modeling. The results demonstrate that the RAR QPEs shows rather underestimate trends in larger values for validation against gauged observations (R2 0.86), but is an adequate input to apply flood runoff simulation efficiently for a dam watershed, showing relatively good model performance (ENS 0.86, R2 0.87, and PBIAS 7.49%) with less requirements for the calibration of transform and routing parameters than the spatially averaged model simulations in HEC-HMS.