• Title/Summary/Keyword: Flood Runoff Analysis

Search Result 356, Processing Time 0.034 seconds

Estimation of Flood Quantile in Ungauged Watersheds for Flood Damage Analysis Based on Flood Index of Natural Flow (미계측 유역의 홍수피해분석을 위한 자연유량의 홍수지표 기반 확률홍수량 산정)

  • Chae, Byung Seok;Choi, Si Jung;Ahn, Jae Hyun;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.175-182
    • /
    • 2018
  • In this study, flood quantiles were estimated at ungauged watersheds by adjusting the flood quantiles from the design rainfall - runoff analysis (DRRA) method based on regional frequency analysis. Comparing the flood frequency analysis (FFA) and DRRA, it was found that the flood quantiles estimated by the DRRA method were overestimated by 52%. In addition, a practical method was suggested to make an flood index using natural flows to apply the regional frequency analysis (RFA) to ungauged watersheds. Considering the relationships among DRRA, FFA, and RFA, we derived an adjusting formula that can be applied to estimate flood quantiles at ungauged watersheds. We also employed Leave-One-Out Cross-Validation scheme and skill score to verify the method proposed in this study. As a result, the proposed model increased the accuracy by 23.2% compared to the existing DRRA method.

Object-Oriented Runoff Analysis Using DataBase (데이터베이스를 이용한 객체지향 유출해석(관개배수 \circled1))

  • 김상민;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.126-131
    • /
    • 2000
  • This paper presents a framework for developing an object-oriented system for runoff analysis. The objects include rainfall, meterorologic, watershed, reservoir, stream, DB management, and GUI. Data and method of each object were analyzed and defined. The database for runoff analysis were designed and DBMS MS-Access was chosen. The system design features and implementation are described, and an graphic user interface for flood runoff is presented

  • PDF

Development and application of the estimation method of flood damage in the ungauged basin using satellite data (위성자료를 활용한 미계측유역의 홍수피해액 추산기법 개발 및 적용)

  • Yeom, Woong-Sun;Park, Dong-Hyeok;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1183-1192
    • /
    • 2020
  • Economic analysis is a basic step in establishing disaster mitigation measures, but it is difficult to verify the results due to uncertainty. Therefore, the scope of investigation and analysis is wide. However, it is difficult to predict the amount of damage caused by flooding because the collection of relevant data is limited in the ungauged basin. In this study, distributed runoff analysis and flooding analysis were performed, and a method of estimating the amount of flood damage in the ungauged basin was proposed using collectible social and economic indicators and flood analysis results. For distributed runoff analysis and flooding analysis, GRM (Grid based Rainfall-runoff Model) and G2D (Grid based 2-Dimensional land surface flood model) developed by Korea Institute of Civil engineering and Building Technology were used. The method of substituting collectible social and economic indicators into the simple method and improvement method was used to estimate the amount of flood damage. As a result of the study, it was possible to estimate the amount of flood damage using satellite data and social and economic indicators in the ungauged basin.

ROC Analysis of Topographic Factors in Flood Vulnerable Area considering Surface Runoff Characteristics (지표 유출 특성을 고려한 홍수취약지역 지형학적 인자의 ROC 분석)

  • Lee, Jae Yeong;Kim, Ji-Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.327-335
    • /
    • 2020
  • The method of selecting an existing flood hazard area via a numerical model requires considerable time and effort. In this regard, this study proposes a method for selecting flood vulnerable areas through topographic analysis based on a surface runoff mechanism to reduce the time and effort required. Flood vulnerable areas based on runoff mechanisms refer to those areas that are advantageous in terms of the flow accumulation characteristics of rainfall-runoff water at the surface, and they generally include lowlands, mild slopes, and rivers. For the analysis, a digital topographic map of the target area (Seoul) was employed. In addition, in the topographic analysis, eight topographic factors were considered, namely, the elevation, slope, profile and plan curvature, topographic wetness index (TWI), stream power index, and the distances from rivers and manholes. Moreover, receiver operating characteristic analysis was conducted between the topographic factors and actual inundation trace data. The results revealed that four topographic factors, namely, elevation, slope, TWI, and distance from manholes, explained the flooded area well. Thus, when a flood vulnerable area is selected, the prioritization method for various factors as proposed in this study can simplify the topographical analytical factors that contribute to flooding.

A Study on Flood Risk Analysis for A Small Stream in Urban Residential Area (도시 주거지역 내 소하천의 홍수 안정성에 관한 연구)

  • Kwak, Jae-Won;Ahn, Kyoung-Soo;Kyoung, Min-Soo;Kim, Hung-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.195-198
    • /
    • 2008
  • In this study we analyzed flood runoff and flood characteristics of an small urban river basin which is in an apartment complex in Yewol-Dong, Buchun-Si, Gyunggi-Do. A little discharge normally flows in the river, however this small river has a relatively high potential of flood damage risk in the flood season due to the high flood level and velocity. Therefore we used the GIS data, cross section data in the river, HEC-RAS model, etc. for investigating safety of a river against flood runoff and also we investigated the stability of hydraulic structures and ability of flood prevention in the river. As the result of investigation, we found that the river had the risk of flood damage occurrence due to the hydraulic structures constructed for various purposes in the river. So we should analyze backwater effect by the structures and consider the risk factors can be occurred by the flood runoff and velocity for more safe design of a small river basin in the residential area such as an apartment complex in the urban area.

  • PDF

An Analysis of Flood Mitigation Effect Applying to LID in Mokgamcheon Watershed using SWMM Model (SWMM 모형을 이용한 목감천 유역의 LID 시설 적용 홍수저감효과 분석)

  • Jang, Yeongsun;Mun, Sungho;Yang, Sunglin
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.75-83
    • /
    • 2013
  • PURPOSES: In this study, flood mitigation effect of drainage asphalt concrete pavement were analyzed by a SWMM 5.0 program in order to evaluate the low impact development (LID) based on the drainage asphalt concrete pavements. METHODS: In order to determine the porosity parameters of drainage asphalt concretes, the specimen mixtures were manufactured using the conditions presented in the previous study. The numerical simulation was conducted using the SWMM 5.0 program considering the flood mitigation effect of drainage asphalt concrete pavements. The effect of flood reduction can be observed when drainage asphalt concrete pavements were applied to Mokgamcheon watershed. The flood mitigation effect analysis of Mokgamcheon watershed as well as continuous simulation of subwatershed runoff were performed through this study. RESULTS : The analysis of drainage asphalt concrete pavements was carried out for evaluating the effect on runoff, resulting in: the peak flow decreases up to 1.26~9.53% after drainage asphalt concrete pavements applied in the SWMM 5.0 program furthermore, the discharge decreases up to 0.55~4.11%. CONCLUSIONS: As a result, the reduced peak flow and discharge were found through the SWMM 5.0 program. It can be concluded that the flood is effectively reduced when the drainage asphalt concrete pavements are used.

Analysis of future flood inundation change in the Tonle Sap basin under a climate change scenario

  • Lee, Dae Eop;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.433-446
    • /
    • 2021
  • In this study, the future flood inundation changes under a climate change were simulated in the Tonle Sap basin in Cambodia, one of the countries with high vulnerability to climate change. For the flood inundation simulation using the rainfall-runoff-inundation (RRI) model, globally available geological data (digital elevation model [DEM]; hydrological data and maps based on Shuttle elevation derivatives [HydroSHED]; land cover: Global land cover facility-moderate resolution imaging spectroradiometer [GLCF-MODIS]), rainfall data (Asian precipitation-highly-resolved observational data integration towards evaluation [APHRODITE]), climate change scenario (HadGEM3-RA), and observational water level (Kratie, Koh Khel, Neak Luong st.) were constructed. The future runoff from the Kratie station, the upper boundary condition of the RRI model, was constructed to be predicted using the long short-term memory (LSTM) model. Based on the results predicted by the LSTM model, a total of 4 cases were selected (representative concentration pathway [RCP] 4.5: 2035, 2075; RCP 8.5: 2051, 2072) with the largest annual average runoff by period and scenario. The results of the analysis of the future flood inundation in the Tonle Sap basin were compared with the results of previous studies. Unlike in the past, when the change in the depth of inundation changed to a range of about 1 to 10 meters during the 1997 - 2005 period, it occurred in a range of about 5 to 9 meters during the future period. The results show that in the future RCP 4.5 and 8.5 scenarios, the variability of discharge is reduced compared to the past and that climate change could change the runoff patterns of the Tonle Sap basin.

Parameter Optimization of Long and Short Term Runoff Models Using Genetic Algorithm (유전자 알고리즘을 이용한 장·단기 유출모형의 매개변수 최적화)

  • Kim, Sun-Joo;Jee, Yong-Geun;Kim, Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.41-52
    • /
    • 2004
  • In this study, parameters of long and short term runoff model were optimized using genetic algorithm as a basic research for integrated water management in a watershed. In case of Korea where drought and flood occurr frequently, the integrated water management is necessary to minimize possible damage of drought and flood. Modified TANK model was optimized as a long term runoff model and storage-function model was optimized as a short term runoff model. Besides distinguished parameters were applied to modified TANK model for supplementing defect that the model estimates less runoff in the storm period. As a result of application, simulated long and short term runoff results showed 7% and 5% improvement compared with before optimized on the average. In case of modified TANK model using distinguished parameters, the simulated runoff after optimized showed more interrelationship than before optimized. Therefore, modified TANK model can be applied for the long term water balance as an integrated water management in a watershed. In case of storage-function model, simulated runoff in the storm period showed high interrelationship with observed one. These optimized models can be applied for the runoff analysis of watershed.

Calculation of Runoff in Flood Basin Using GIS (GIS를 활용한 홍수유역의 유출량 산정)

  • 이형석;김인호
    • Spatial Information Research
    • /
    • v.11 no.2
    • /
    • pp.143-153
    • /
    • 2003
  • In order to investigate the effect of a pouring rain that it follows in the typhoon, the effect analysis with actual measurement data of rainfall outflow it follows in flood basin is necessary. Also there is a case that it analyzes with the fact that the rainfall occurs identically in whole basin in case of the rainfall outflow analysis, but the actual rainfall distribution from the basin very will be irregular and the interpretation which it reflects must become accomplished. It created spatial information of terrain, land use and the soil using GIS. It created topographical factor of the subject area and calculated CN(runoff curve number) with WMS(Watershed Modeling System). It calculated runoff using a HEC-1 model and the Rational Method connected at the WMS. By connecting GIS and WMS, it calculated the effect of a pouring rain and runoff from the construction area. Also it will be able to apply with a basic data in more efficient runoff analysis.

  • PDF

A study on simplification of SWMM for prime time of urban flood forecasting -a case study of Daerim basin- (도시홍수예보 골든타임확보를 위한 SWMM유출모형 단순화 연구 -대림배수분구를 중심으로-)

  • Lee, Jung-Hwan;Kim, Min-Seok;Yuk, Gi-Moon;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.81-88
    • /
    • 2018
  • The rainfall-runoff model made of sewer networks in the urban area is vast and complex, making it unsuitable for real-time urban flood forecasting. Therefore, the rainfall-runoff model is constructed and simplified using the sewer network of Daerim baisn. The network simplification process was composed of 5 steps based on cumulative drainage area and all parameters of SWMM were calculated using weighted area. Also, in order to estimate the optimal simplification range of the sewage network, runoff and flood analysis was carried out by 5 simplification ranges. As a result, the number of nodes, conduits and the simulation time were constantly reduced to 50~90% according to the simplification ranges. The runoff results of simplified models show the same result before the simplification. In the 2D flood analysis, as the simplification range increases by cumulative drainage area, the number of overflow nodes significantly decreased and the positions were changed, but similar flooding pattern was appeared. However, in the case of more than 6 ha cumulative drainage area, some inundation areas could not be occurred because of deleted nodes from upstream. As a result of comparing flood area and flood depth, it was analyzed that the flood result based on simplification range of 1 ha cumulative drainage area is most similar to the analysis result before simplification. It is expected that this study can be used as reliable data suitable for real-time urban flood forecasting by simplifying sewer network considering SWMM parameters.