• Title/Summary/Keyword: Flood Level

Search Result 755, Processing Time 0.027 seconds

The Flood Forecasting Model for the In-do Brdg. by the Multi-regression Analysis between the Water-level and the Influence Parameters (한강인도교 수위와 영향인자간의 다중회귀분석에 의한 홍수위 예측모형)

  • 윤강훈;신현민
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.55-69
    • /
    • 1994
  • In order to enhance the short-term flood forecasting accuracy of the water level of the In-do Brdg., three statistical flood forecasting models are presented models are presented and the forecasting accuracies and stabilities of the models are studied. The presented statistical models are as follows: The multi-input model by the multi-regression analysis between the water level of the In-do Brdg. and the influence parameters(Model MM). The two-level multi parameter model according to the water level tendency(Model 2MP). Among the three models, the Model MM showed the lowest forecasting accuracy, the model 2MP showed the highest forecasting accuracy, although this model sometimes became unstable and diverged. The model MMP forecasted the flood less accurately than model 2MP, but it gave more stable forecasting results.

  • PDF

MCDM Approach for Flood Vulnerability Assessment using TOPSIS Method with α Cut Level Sets (α-cut Fuzzy TOPSIS 기법을 적용한 다기준 홍수취약성 평가)

  • Lee, Gyumin;Chung, Eun-Sung;Jun, Kyung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.10
    • /
    • pp.977-987
    • /
    • 2013
  • This study aims to develop a multiple criteria decision making (MCDM) approach for flood vulnerability assessment which considers uncertainty. The flood vulnerability assessment procedure consists of three steps: (1) use the Delphi process to determine the criteria and their corresponding weights-the adopted criteria represent the social, economic, and environmental circumstances related to floods, (2) construct a fuzzy data matrix for the flood vulnerability criteria using fuzzification and standardization, and (3) set priorities based on the number of assessed vulnerabilities. This study uses a modified fuzzy TOPSIS method based on ${\alpha}$-level sets which considers various uncertainties related to weight derivation and crisp data aggregation. Further, Spearman's rank correlation analysis is used to compare the rankings obtained using the proposed method with those obtained using fuzzy TOPSIS with fuzzy data, TOPSIS, and WSM methods with crisp data. The fuzzy TOPSIS method based on ${\alpha}$-cut level sets is found to have a higher correlation rate than the other methods, and thus, it can reduce the difference of the rankings which uses crisp and fuzzy data. Thus, the proposed flood vulnerability assessment method can effectively support flood management policies.

Analysis on the Hydraulic Effect due to Bridge and Culvert in the Stream (교량 및 암거의 수리영향 분석)

  • Lee, Jong-Seol;Chung, Jae-Hak;Kim, Soo-Jun;Lee, Ho-Yul
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.571-574
    • /
    • 2007
  • The purpose of this research is to analyze sensitivities on hydraulic characteristic factors of bridge and culvert causing flood water level rising. With HEC-RAS and RMA2 models, analysis of backwater due to bridge and culvert in an ideal stream was carried out. The results of hydraulic modeling and sensitivity analysis indicated that the opening ratio and the Froude number were the most sensitive factors and other factors were not quite sensitive to flood water level rising.

  • PDF

Real-Time Flood Forecasting System For the Keum River Estuary Dam(I) -System Development- (금강하구둑 홍수예경보 시스템 개발(I) -시스템의 구성-)

  • 정하우;이남호;김현영;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.79-87
    • /
    • 1994
  • A real-time flood forecasting system(FLOFS) was developed for the real-time and predictive determination of flood discharges and stages, and to aid in flood management decisions in the Keum River Estuary Dam. The system consists of three subsystems : data subsystem, model subsystem, and user subsystem. The data subsystem controls and manages data transmitted from telemetering systems and simulated by models. The model subsystem combines various techniques for rainfall-runoff modeling, tidal-level forecasting modeling, one-dimensional unsteady flood routing, Kalman filtering, and autoregressivemovingaverage(ARMA) modeling. The user subsystem in a menu-driven and man-machine interface system.

  • PDF

A Survey of the Consumption of Convenience Foods (대전.충남 지역 대학생의 편의식품 섭취 실태)

  • 김미원;박명순
    • Korean Journal of Community Nutrition
    • /
    • v.7 no.2
    • /
    • pp.149-155
    • /
    • 2002
  • The purpose of this study was to investigate the consumption pattern of convenience flood products, and related factors among 229 Chungnam College student in Daejeon, using a written questionnaire. Of the students 31.9% were male, and 68.1% female. The results have been summarized as follows: 1) The averages household income ranged from ₩ 1,500,000 to ₩ 2,070,000 a month. Convenience flood intake of lunch was 46%, and of snacks was 31.4%. The frequency of purchasing convenience floods with a manufacturer s date was 6.09 $\pm$ 1.16, with packing conditions was 5.55 $\pm$ 1.21, with ingredients listed was 5.43 $\pm$ 1.23, and with a price was 5.40 $\pm$ 1.16. 2) In comparing household income by convenience food intake, those with household incomes ranging from ₩ 2,000,000 to ₩ 2,500,000 had a frequency of convenience flood intake of 2 to 3 times per month. When the pocket money level increased, the convenience flood intake increased. This study provides information on convenience flood intake.

Improvement of flood simulation accuracy based on the combination of hydraulic model and error correction model

  • Li, Li;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.258-258
    • /
    • 2018
  • In this study, a hydraulic flow model and an error correction model are combined to improve the flood simulation accuracy. First, the hydraulic flow model is calibrated by optimizing the Manning's roughness coefficient that considers spatial and temporal variability. Then, an error correction model were used to correct the systematic errors of the calibrated hydraulic model. The error correction model is developed using Artificial Neural Networks (ANNs) that can estimate the systematic simulation errors of the hydraulic model by considering some state variables as inputs. The input variables are selected using parital mutual information (PMI) technique. It was found that the calibrated hydraulic model can simulate flood water levels with good accuracy. Then, the accuracy of estimated flood levels is improved further by using the error correction model. The method proposed in this study can be used to the flood control and water resources management as it can provide accurate water level eatimation.

  • PDF

Effect of Temporal Distribution of Rainfall on Water-Surface Level of Sihwa Lake (강우분포유형이 저수지의 홍수위에 미치는 영향 (시화호를 중심으로))

  • Lee, Jong-Kyu;Lee, Jai-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.325-343
    • /
    • 2003
  • In this study, several types of rainfall time distribution of the probabilistic rainfall amount have been applied to the Sihwa Lake, located in Gyounggi Province, Korea and their runoff characteristics, obtained by the Hec-Hms program, according to the rainfall distribution types, were compared and analysed. And then, the influences of the above rainfall distribution types of the highest water level of the reservoir, computed through the reservoir flood routing, were analysed. The tidal variation was considered, performing the flood routing and, in addition, the new program, called “IWSEA”, which can compute the reservoir water level, was developed. To conclude, when the Mononobe type of the rainfall distribution was used, the largest inflow flood discharge into the reservoir was performed and the highest reservoir water level was obtained when the Pilgrim-Cordery type of the rainfall distribution was applied.

Work Measurement of Dietetic Staff through Work Sampling Methodology in School Foodservice Systems (워크샘플링에 의한 학교급식 전담직원의 직무분석)

  • 양일선;이영은;차진아;유태용;정라나
    • Journal of Nutrition and Health
    • /
    • v.35 no.2
    • /
    • pp.263-271
    • /
    • 2002
  • The purpose of this study was to determine the standard work time of dietetic staff through work sampling methodology in school flood service systems. Work measurement through work sampling methodology was conducted in five conventional, five commissary and five joint management flood service systems over two consecutive weeks in October 1999. Statistical analysis was performed on the SAS/Win 6.12 package program for Kruskal-Wallis test and multiple comparison. Observed data were satisfied with a confidence level of 95% and a confidence interval of $\pm$ 0.05. The results of this study can be summarized as follows. The actual time spent by dietetic staff members in conventional, commissary, joint-management flood servile systems was 2,394, 2,521 and 2,110 minutes per week, respectively. Transportation time of each flood service systeml and ILO allowance rate (11%) was applied. Thus, the standard work time per week of dietetic staff members in conventional, commissary, joint-management flood service systems was 2,746.14, 2,861.58 and 2,520.81 minutes, respectively. The standardized index was 1.04, 1.08 and 0.95 men in conventional, commissary, and joint-management flood service systems, respectively. Regardless of the school flood service system, those with "the duty of cooking and distribution management" had the longest labor time, while those with "duty of nutritional education" had the shortest labor time.

A Flood Routing for the Downstream of the Kum River Basin due to the Teachong Dam Discharge (대청댐 방류에 따른 금강 하류부의 홍수추적)

  • Park, Bong-Jin;Gang, Gwon-Su;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.2
    • /
    • pp.131-141
    • /
    • 1997
  • In this study, the Storage Function Method and Loopnet Model (Unsteady flow analysis model) were used to construct the flood prediction system which can predict the effects of the water release in the downstream region of Teachong Dam. The regional frequency analysis (L-moment) was applied to compute frequency-based precipitation, and the flood prediction system was also used for flood routing of the down stream region of Teachong Dam in the Kum River Basin to calculate frequency based flood. The magnitude of flood, water level, discharge, and travel time to the major points of the downstream region of Teachong Dam, which can be used as an imdex of flood control management of Teachong Dam, were calculated.

  • PDF

Simulation of the Flood Damage Area of the Imjin River Basin in the Case of North Korea's Hwanggang Dam Discharge (북한 황강댐 유출량에 따른 임진강유역 홍수 피해 지역 시뮬레이션)

  • Park, Sung-Jae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1033-1039
    • /
    • 2018
  • In Korea, every year during the summer season, typhoons and torrential rains cause floods and damage to property. In particular, the Imjin River basin is characterized by steep slopes, narrow upstream areas, and low flat downstream areas, which are vulnerable to floods. In addition, damages occurred due to unauthorized discharge in the Hwanggang Dam, a large dam upstream of the Imjin River in North Korea. In order to prevent such flood damage, Korea is constructing the Gunnam Flood Control Site in 2010 to prevent flood damage. However, even after the construction of the flood control zone, the flood control capacity is only 20% of the maximum water level of the Hwanggang dam. This study used LAHARZ_py program to calculate flood damage area in the northern part of Gyeonggi province. As a result, when the discharge of Hwanggang dam exceeding the flood control ability of Gunnam flood control zone occurs, damage to Yeoncheon-gun and Paju-si of Gyeonggi-do was expected. This study will be useful as a material to prepare for flood damage.