We propose floating point arithmetic units for geometry operation of mobile 3D graphic processor. The proposed arithmetic units conform to the single precision format of IEEE standard 754-1985 that is a standard of floating point arithmetic. The rounding algorithm applies the nearest toward zero form. The proposed adder/subtraction unit and multiplier have one clock cycle latency, and the inversion unit has three clock cycle latency. We estimate the required numbers of arithmetic operation for Viewing transformation. The first stage of geometry operation is composed with translation, rotation and scaling operation. The translation operation requires three addition and the rotation operation needs three addition and six multiplication. The scaling operation requires three multiplication. The viewing transformation is performed in 15 clock cycles. If the adder and the multiplier have their own in/out ports, the viewing transformation can be done in 9 clock cycles. The error margin of proposed arithmetic units is smaller than $10^{-5}$ that is the request in the OpenGL standard. The proposed arithmetic units carry out operations in 100MHz clock frequency.
다음은 부동소수점 역수 및 역제곱근 계산에 많이 사용하는 뉴톤-랍손 알고리즘은 일정한 횟수의 곱셈을 반복하여 계산한다. 본 논문에서는 뉴톤-랍손 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 개선된 뉴톤-랍손 알고리즘을 제안한다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 테이블에서 단정도실수 및 배정도실수의 역수 및 역제곱근 계산에 필요한 평균 곱셈 횟수를 산출한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복 연산을 수행하므로 역수 및 역제곱근 계산기의 성능을 높일 수 있고 최적의 근사 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.
One of the issues in extending the range of applicable problems of real-time hybrid simulation is the computation speed of the simulator when large-scale computational models with a large number of DOF are used. In this study, functionality of real-time dynamic simulation of MDOF systems is achieved by creating a logic circuit that performs the step-by-step numerical time integration of the equations of motion of the system. The designed logic circuit can be implemented to an FPGA-based system; FPGA (Field Programmable Gate Array) allows large-scale parallel computing by implementing a number of arithmetic operators within the device. The operator splitting method is used as the numerical time integration scheme. The logic circuit consists of blocks of circuits that perform numerical arithmetic operations that appear in the integration scheme, including addition and multiplication of floating-point numbers, registers to store the intermediate data, and data busses connecting these elements to transmit various information including the floating-point numerical data among them. Case study on several types of linear and nonlinear MDOF system models shows that use of resource sharing in logic synthesis is crucial for effective application of FPGA to real-time dynamic simulation of structural response with time step interval of 1 ms.
The $4{\times}4$ homogeneous transformation matrix is a compact representation of orientation and position of an object in robotics and computer graphics. A coordinate transformation is accomplished through the successive multiplications of homogeneous matrices, each of which represents the orientation and position of each corresponding link. Thus, for real time control applications in robotics or animation in computer graphics, the fast multiplication of homogeneous matrices is quite demanding. In this paper, a parallel-architecture vector processor is designed for this purpose. The processor has several key features. For the accuracy of computation for real application, the operands of the processors are floating point numbers based on the IEEE Standard 754. For the parallelism and reduction of hardware redundancy, the processor takes column vectors of homogeneous matrices as multiplication unit. To further improve the throughput, the processor structure and its control is based on a pipe-lined structure. Since the designed processor can be used as a special purpose coprocessor in robotics and computer graphics, additionally to special matrix/matrix or matrix/vector multiplication, several other useful instructions for various transformation algorithms are included for wide application of the new design. The suggested instruction set will serve as standard in future processor design for Robotics and Computer Graphics. The design is verified using FPGA implementation. Also a comparative performance improvement of the proposed design is studied compared to a uni-processor approach for possibilities of its real time application.
This paper described a design and implementation of the division/square-root for a redundant floating point binary number using high-speed quotient selector. This division/square-root used the method of a redundant binary addition with 25MHz clock speed. The addition of two numbers can be performed in a constant time independent of the word length since carry propagation can be eliminated. We have developed a 16-bit VLSI circuit for division and square-root operations used extensively in each iterative step. It peformed the division and square-root by a redundant binary addition to the shifted binary number every 16 cycles. Also the circuit uses the nonrestoring method to obtain a quotient. The quotient selection logic used a leading three digits of partial remainders in order to be implemented in a simple circuit. As a result, the performance of the proposed scheme is further enhanced in the speed of operation process by applying new quotient selection addition logic which can be parallelly process the quotient decision field. It showed the speed-up of 13% faster than previously presented schemes used the same algorithms.
부동소수점 제곱근 계산에 많이 사용하는 골드스미트 제곱근 알고리즘은 곱셈을 반복하여 제곱근을 계산한다. 본 논문에서는 골드스미트 제곱근 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 알고리즘을 제안한다. 'F'의 제곱근 계산은 초기값 $X_0=Y_0=T^2{\times}F,\;T=\frac{1}{\sqrt {F}}+e_t$에 대하여, $R_i=\frac{3-e_r-X_i}{2},\;X_{i+1}=X_i{\times}R^2_i,\;Y_{i+1}=Y_i{\times}R_i,\;i{\in}\{{0,1,2,{\ldots},n-1} }}'$을 반복한다 곱셈 결과는 소수점 이하 p 비트 미만을 절삭하며, 절삭 오차는 $e_r=2^{-p}$보다 작다. p는 단정도실수에서 28, 배정도실수에서 58이다. $X_i=1{\pm}e_i$ 이면 $X_{i+1}$ = $1-e_{i+1}$$e_{i+1} {\frac{3e^2_i}{4}{\mp}\frac{e^3_i}} $ +4$e_{r}$이다. $|X_i-1|$ < $2^{\frac{-p+2}{2}}$이면, $e_{i+1}$ < $8e_{r}$ 이 부동소수점으로 표현할 수 있는 최소값보다 작게 되며, $\sqrt{F}${\fallingdotseq}\frac{Y_{i+1}}{T}}$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 제곱근 테이블 ($T=\frac{1}{\sqrt{F}}+e_i$)에서 단정도실수 및 배정도실수의 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그래픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.
부동소수점 나눗셈에서 많이 사용하는 골드스미트 나눗셈 알고리즘은 일정한 횟수의 곱셈을 반복한다. 본 논문에서는 오차가 정해진 값보다 작아질 때까지 곱셈을 반복하여 나눗셈을 수행하는 가변 시간 골드스미트 부동소수점 나눗셈 알고리즘을 제안한다. 부동소수점 나눗셈 ‘$\frac{N}{F}$'는 'T=$\frac{1}{F}+e_t$'를 분모와 분자에 곱하면 ’$\frac{TN}{TF}=\frac{N_0}{F_0}$'가 된다. ’$R_i=(2-e_r-F_i),\;N_{i+1}=N_i{\ast}R_i,\;F_{i+1}=F_i{\ast}R_i$, i$\in${0,1,...n-1}'를 반복한다. 중간 곱셈 결과는 소수점이하 p 비트 미만을 절삭하며, 절삭 오차는 ‘$e_r=2^{-p}$', 보다 작다. p는 단정도실수에서 29, 배정도실수에서 59이다. ’$F_i=1+e_i$'이라고 하면 ‘$F_{i+1}=1-e_{i+1},\;e_{i+1},\;e_{i+1}'이 된다. '$[F_i-1]<2^{\frac{-p+3}{2}}$'이면, ’$e_{i+1}<16e_r$'이 부동소수점으로 표현 가능한 최소값보다 작아지며, ‘$N_{i+1}\risingdotseq\frac{N}{F}$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 테이블($T=\frac{1}{F}+e_t$)에서 단정도실수 및 배정도실수의 나눗셈 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복 연산을 수행하므로 나눗셈기의 성능을 높일 수 있다. 또한 최적의 근사 역수 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스,, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.
부동소수점 제곱근 계산에 많이 사용하는 뉴톤-랍손 부동소수점 역수 제곱근 알고리즘은 일정한 횟수의 곱셈을 반복하여 역수 제곱근을 계산한다. 본 논문에서는 뉴톤-랍손 역수 제곱근 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 알고리즘을 제안한다. `F`의 역수 제곱근 계산은 초기값 '$X_0={\frac{1}{\sqrt{F}}}{\pm}e_0$'에 대하여, '$X_{i+1}=\frac{{X_i}(3-e_r-{FX_i}^2)}{2}$, $i\in{0,1,2,{\ldots}n-1}$'을 반복한다. 중간 곱셈 결과는 소수점 이하 p 비트 미만을 절삭하며, 절삭 오차는 '$e_r=2^{-p}$' 보다 작다. p는 단정도실수에서 28, 배정도실수에서 58이다. '$X_i={\frac{1}{\sqrt{F}}}{\pm}e_i$'라고 하면 '$X_{i+1}={\frac{1}{\sqrt{F}}}-e_{i+1}$, $e_{i+1}{<}{\frac{3{\sqrt{F}}{{e_i}^2}}{2}}{\mp}{\frac{{Fe_i}^3}{2}}+2e_r$이 된다. '$|{\frac{\sqrt{3-e_r-{FX_i}^2}}{2}}-1|<2^{\frac{\sqrt{-p}{2}}}$'이면,'$e_{i+1}<8e_r$이 부동소수점으로 표현 가능한 최소값보다 작아지며, '$X_{i+1}\fallingdotseq{\frac{1}{\sqrt{F}}}$'이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 제곱근 테이블($X_0={\frac{1}{\sqrt{F}}}{\pm}e_0$)에서 단정도실수 및 배정도실수의 역수 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 역수 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.
부동소수점 나눗셈에서 많이 사용하는 뉴톤-랍손 부동소수점 역수 알고리즘은 일정한 횟수의 곱셈을 반복하여 역수를 계산한다. 본 논문에서는 오차가 정해진 값보다 작아질 때까지 곱셈을 반복해서 역수를 계산하는 가변 시간 뉴톤-랍손 부동소수점 역수 알고리즘을 제안한다. 'F'의 역수 계산은 초기값 $'X_0=\frac{1}{F}{\pm}e_0'$에 대하여, $'X_{i+1}=X=X_i*(2-e_r-F*X_i),\;i\in\{0,\;1,\;2,...n-1\}'$을 반복한다. 중간 곱셈 견과는 소수점 이하 p비트 미만을 절삭하며, 절삭 오차는 $'e_r=2^{-p}'$보다 작다. p는 단정도실수에서 27, 배정도실수에서 57이다. $'X_i=\frac{1}{F}+e_i{'}$라 하면 $'X_{i+1}=\frac{1}{F}-e_{i+1},\;e_{i+1}이 된다. $'\mid(2-e_r-F*X_i)-1\mid<2^{\frac{-p+2}{2}}{'}이면, $'e_{i+1}<4e_r{'}$이 부동산소수점으로 표현 가능한 최소값보다 작이지며, $'X_{i+1}\fallingdotseq\frac{1}{F}'$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 역수 테이블$(X_0=\frac{1}{F}{\pm}e_0)$에서 단정도실수 및 배정도실수의 역수 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복 연산을 수행하므로 역수 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.
This paper proposes an 3D graphics rendering processor for portable device. One the most important factor is chip size for portable device, but the conventional 3D graphics rendering processor is not a suitable because the processor needs a lot of multiplication and division units. So the proposed architecture substitutes single precision floating point by 32 bit fixed point, and uses recursive units for the same operation such as color values(z, r, g, b, a) and texture values (s, t, u, v). In this approach, we reduce numbers of multiplications and divisions by 66.1% and 75% respectively at the sacrifice of performance degradation by 2.12%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.