• Title/Summary/Keyword: Floating wave energy converter(WEC)

Search Result 18, Processing Time 0.026 seconds

Theoretical Analysis of Wave Energy Converter

  • Oh, Jin-Seok;Komatsu, Toshimitsu;Kim, Yun-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.169-174
    • /
    • 2008
  • Floating devices, such as a cavity resonance device take advantage of both the water motion and the wave induced motions of the floating body itself. The wave energy converter is known commercially as the WAGB(Wave Activated Generator Buoy) and is used in some commercially available buoys to power navigation aids such as lights and horns. This wave energy converter consists of a circular floatation body which contains a vertical center pipe that has free communication with the sea. A theoretical analysis of this power generated by a pneumatic type wave energy converter is performed and the results obtained from the analysis are used for a real wave energy converter for buoy. This paper presents the analysis results and the design method for the WEC(Wave Energy Converter), and the associate results are application to the commercially available WEC for buoy. Maximum performance of WEC occurs at resonance with driving waves. The analysis of WEC is performed with LabVIEW program, and the design method of WEC for buoy is suggested in this paper.

Oscillating Water Column (OWC) Wave Energy Converter Part 1: Fixed OWC

  • Yang, Hyunjai;Jung, Hyen-Cheol;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.280-294
    • /
    • 2022
  • This study reviews the recent development and research results of a fixed oscillating water column (OWC) wave energy converter (WEC). The OWC WEC can be divided into fixed and floating types based on the installation location and movement of the structure. In this article, the study on a stationary OWC WEC, which is close to commercialization through the accumulation of long-term research achievements, is divided into five research categories with a focus on primary energy conversion research. These research categories include potential-flow-based numerical analysis, wave tank experiments, computational fluid dynamics analyses toward investigation of fluid viscous effects, U-shaped OWC studies that can amplify water surface displacement in the OWC chamber, and studies on OWC prototypes that have been installed and operated in real sea environments. This review will provide an overview of recent research on the stationary OWC WEC and basic information for further detailed studies on the OWC.

Design of the dual-buoy wave energy converter based on actual wave data of East Sea

  • Kim, Jeongrok;Kweon, Hyuck-Min;Jeong, Weon-Mu;Cho, Il-Hyoung;Cho, Hong-Yeon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.739-749
    • /
    • 2015
  • A new conceptual dual-buoy Wave Energy Converter (WEC) for the enhancement of energy extraction efficiency is suggested. Based on actual wave data, the design process for the suggested WEC is conducted in such a way as to ensure that it is suitable in real sea. Actual wave data measured in Korea's East Sea (position: $36.404N^{\circ}$ and $129.274E^{\circ}$) from May 1, 2002 to March 29, 2005 were used as the input wave spectrum for the performance estimation of the dual-buoy WEC. The suggested WEC, a point absorber type, consists of two concentric floating circular cylinders (an inner and a hollow outer buoy). Multiple resonant frequencies in proposed WEC affect the Power Ttake-off (PTO) performance of the WEC. Based on the numerical results, several design strategies are proposed to further enhance the extraction efficiency, including intentional mismatching among the heave natural frequencies of dual buoys, the natural frequency of the internal fluid, and the peak frequency of the input wave spectrum.

Motion Analysis of A Wind-Wave Energy TLP Platform Considering Second-order Wave Forces

  • Hongbhin Kim;Eun-hong Min;Sanghwan Heo;WeonCheol Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.390-402
    • /
    • 2022
  • Offshore wind energy has become a major energy source, and various studies are underway to increase the economic feasibility of floating offshore wind turbines (FOWT). In this study, the characteristics of wave-induced motion of a combined wind-wave energy platform were analyzed to reduce the variability of energy extraction. A user subroutine was developed, and numerical analysis was performed in connection with the ANSYS-AQWA hydrodynamic program in the time domain. A platform combining the TLP-type FOWT and the Wavestar-type wave energy converter (WEC) was proposed. Each motion response of the platform on the second-order wave load, the effect of WEC attachment and Power take-off (PTO) force were analyzed. The mooring line tension according to the installation location was also analyzed. The vertical motion of a single FOWT was increased approximately three times due to the second-order sum-frequency wave load. The PTO force of the WEC played as a vertical motion damper for the combined platform. The tension of the mooring lines in front of the incident wave direction was dominantly affected by the pitch of the platform, and the mooring lines located at the side of the platform were mainly affected by the heave of the platform.

Experimental and Numerical Study for Motion Reduction Design of Floating Wave Energy Converter (부유식 파력발전구조물의 운동 저감부 형상설계에 관한 수치 및 실험적 연구)

  • Park, Ji Yong;Nam, Bo Woo;Hong, Sa Young;Shin, Seung Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.81-89
    • /
    • 2014
  • The present study aims to design an optimized hull shape of a floating pendulum-type wave energy converter(WEC). The purpose of these structure is to improve the performance and stability of the WEC by reducing its motion under operating and survival wave conditions. In this study, motion reduction structures, like restoring and dampling plates were installed on a floating pendulum WEC that has been the subject of previous studies. Restoring plates were installed to increase the restoring force and shift the natural period to a shorter period. Damping plates were installed to shift the natural period to a longer period by increasing the added mass. The effects of the structures were then analyzed under different incident wave conditions. The design parameters for the motion reduction structures were size, shape, and installed position. The wave-induced motion characteristics and performance of the floating pendulum WEC were also investigated numerically. Based on the simulation results, we are able to optimize the motion reduction structure of the WEC, thus improving its efficiency and durability.

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.

Hydraulic Model Test of a Floating Wave Energy Converter with a Cross-flow Turbine

  • Kim, Sangyoon;Kim, Byungha;Wata, Joji;Lee, Young-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.222-228
    • /
    • 2016
  • Almost 70% of the earth is covered by the ocean. Extracting the power available in the ocean using a wave energy converter has been seen to be eco-friendly and renewable. This study focuses on developing a method for analyzing a wave energy device that uses a cross-flow turbine. The motion of the ocean wave causes an internal bi-directional flow of water and the cross-flow turbine is able to rotate in one direction. This device is considered of double-hull structure, and because of this structure, sea water does not come into contact with theturbine. Due to this, the problem of befouling on the turbine is avoided. This study shows specific relationship for wave length and several motions.

Enhancement of wave-energy-conversion efficiency of a single power buoy with inner dynamic system by intentional mismatching strategy

  • Cho, I.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.203-217
    • /
    • 2013
  • A PTO (power-take-off) mechanism by using relative heave motions between a floating buoy and its inner mass (magnet or amateur) is suggested. The inner power take-off system is characterized by a mass with linear stiffness and damping. A vertical truncated cylinder is selected as a buoy and a special station-keeping system is proposed to minimize pitch motions while not affecting heave motions. By numerical examples, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC(wave energy converter) theory. Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO, which includes the intentional mismatching among heave natural frequency of the buoy, natural frequency of the inner dynamic system, and peak frequency of input wave spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the required damping value is significantly reduced, which is a big advantage in designing the proposed WEC with practical inner LEG (linear electric generator) system.

Investigation of Moving Angle of Power Take off Mechanism on the Efficiency of Wave Energy Converter (파력발전기의 동력인출장치의 회전각도가 효율에 미치는 영향 분석)

  • Do, H.T.;Nguyen, M.T.;Phan, C.B.;Lee, S.Y.;Park, H.G.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.25-35
    • /
    • 2015
  • The hydraulic power-take-off mechanism (HPTO) is one of the most popular methods in wave energy converters (WECs). However, the conventional HPTO with only one direction motion has a number of drawbacks that limit its power capture capability. This paper proposes an adjustable moving angle wave energy converter (AMAWEC) and investigates the effect of the moving angle on the performance of the wave energy converter to find the optimal moving angle in order to increase the power capture capability as well as energy efficiency. A mathematical model of components from a floating buoy to a hydraulic motor was modeled. A small scale WEC test rig was fabricated to verify the power capture capability and efficiency of the proposed system through experiments.

A New Design of Wave Energy Generator Using Hydrostatic Transmission (정유압 구동식 변속기를 사용한 새로운 파력 발전기 설계)

  • Ahn, Kyoungkwan;Dinh, Quangtruong;Yoon, Jongil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.171-171
    • /
    • 2010
  • An innovative design of a floating-buoy wave energy converter (WEC) using hydrostatic transmission (HST), named HSTWEC, is presented in this paper. The system is designed to convert ocean wave fluctuation into electricity by using the HST circuit and an electric generator. Based on the floating-buoy concept, the wave forces the sub-buoy to move up and down. Consequently, the electric power can be obtained from the generator in both the moving directions of the sub-buoy through the HST circuit as shown in Fig. 1. In order to investigate the HSTWEC operations, a mathematical model of the system is indispensible. In addition, the method to control the HSTWEC, including: pump displacement control, tension adjustment control and ballast weight control, is also discussed in this paper. Finally, the design concept as well as simulation results indicated that this HSTWEC design is an effective solution and possible to fabricate for wave energy generation.

  • PDF