• Title/Summary/Keyword: Floating position prediction

Search Result 7, Processing Time 0.025 seconds

The prediction of floating position of human model after wearing life-jacket based on the three dimensional modeling (3차원 모델링을 통한 구명복 착용 후 부양자세 예측)

  • Bi, Chong-Song;Kim, Dong-Joon;Park, Jong-Heon;Min, Kyong-Cheol;Lee, Jae-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.3
    • /
    • pp.257-266
    • /
    • 2011
  • Recently, the manufacturers of life-jacket are very interested in the acquisition of USCG(US Coast Guard) approval because the acquisition of USCG approval has an important role in the purchasing decision of the buyer's. Be based on criterion of USCG, we studied how to predict the change of floating position of human model with life-jacket to verify the backside restore. For this, in this study, the human model and the lifejacket was modeled in three dimension, the application program for prediction of floating position was developed, and plugged-in commercial program.

Leakage and Rotordynamic Analysis of High Pressure Floating Ring Seal in Turbo Pump (터보 펌프 고압 후로팅 링 실의 누설량 및 회전체 동역학적 특성 해석)

  • Ha, Tae Woong;Lee, Yong-Bok;Kim, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.29-38
    • /
    • 2001
  • The floating ring seal has the ability of minimizing clearance without the rubbing phenomenon. It is often used in the turbo pump units of liquid rocket engines due to its superior leakage performance. The exact prediction of the lock-up position of the floating ring, the leakage performance, and the rotordynamic coefficients of the seal is necessary to evaluate the rotordynamic performance of the turbo pump unit. The governing equations(which are based on the Bulk-flow Model) we solved by the Fast Fourier Transform method. The lock-up position, leakage flow rate, and rotordynamic coefficients are evaluated according to the geometric parameters of the floating ring seal.

  • PDF

Analysis of Response of Floating Ring for High Pressure Floating Ring Seal in Turbo Pump (고압 터보 펌프 후로팅 링 실의 후로팅 링 거동 해석)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.21 no.3
    • /
    • pp.122-129
    • /
    • 2005
  • The floating ring seal has the ability of minimizing clearance without rubbing phenomenon. However, the seal ring can be unstable due to extremely high lock-up eccentricity ratio arisen from the poor design of height and surface finish of the ring. The exact prediction of the lock-up position of the floating ring is necessary to design the floating ring properly. The governing equations are developed and solved numerically. The test facility for the measurement of the boundary-lubrication-friction coefficient of the ring‘s surface has been established. Based on the results of analysis, the geometric conditions of the floating ring seal are suggested for operating at a low lock-up eccentricity ratio.

Prediction of Positions of Gas Defects Generated from Core (중자에서 발생한 가스 결함 위치 예측)

  • Matsushita, Makoto;Kosaka, Akira;Kanatani, Shigehiro
    • Journal of Korea Foundry Society
    • /
    • v.42 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • Hydraulic units are important components of agricultural and construction machinery, and thus require high-quality castings. However, gas defects occurring inside the sand cores of the castings due to the resin used is a problem. This study therefore aimed to develop a casting simulation method that can clarify the gas defect positions. Gas defects are thought to be caused by gas generated after the molten metal fills up the mold cavity. The gas constant is the most effective factor for simulating this gas generated from sand cores. It is calculated by gas generating temperature and analysis of composition in the inert gas atmosphere modified according to the mold filling conditions of molten metal. It is assumed that gases generated from the inside of castings remain if the following formula is established. [Time of occurrence of gas generation] + [Time of occurrence of gas floating] > [Time of occurrence of casting surface solidification] The possibility of gas defects is evaluated by the time of occurrence of gas generation and gas floating calculated using the gas constant. The residual position of generated gases is decided by the closed loops indicating the final solidification location in the casting simulation. The above procedure enables us to suggest suitable casting designs with zero gas defects, without the need to repeat casting tests.

Design and Dynamic Behavior Prediction of a 4-DOF Piping Joint (4-자유도 배관 관절의 설계 및 동적 거동 예측)

  • Lee, Yunyong;Kang, Hwankook;Lee, Jong Rim;Lim, Seungchul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.298-307
    • /
    • 2016
  • In the building process of FPSOs(floating production, storage and offloading units) is the increasing demand of high performance piping joints that can be installed on its turret system and maintain smooth and long-term flow of ultra-high pressure crude oil, being subjected to external excitations such as wind and wave on the sea. Following such a trend, in this paper, a new-type piping joint of four effective degrees of freedom has been designed, and its dynamic characteristics predicted through mathematical modeling and computer simulations. Moreover, via an example it was shown how the yaw motion in particular can be independently controlled for future durability test despite strong kinetic couplings.

Development of a Listener Position Adaptive Real-Time Sound Reproduction System (청취자 위치 적응 실시간 사운드 재생 시스템의 개발)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.458-467
    • /
    • 2010
  • In this paper, a new audio reproduction system was developed in which the cross-talk signals would be reasonably cancelled at an arbitrary listener position. To adaptively remove the cross-talk signals according to the listener's position, a method of tracking the listener position was employed. This was achieved using the two microphones, where the listener direction was estimated using the time-delay between the two signals from the two microphones, respectively. Moreover, room reverberation effects were taken into consideration where linear prediction analysis was involved. To remove the cross-talk signals at the left-and right-ears, the paths between the sources and the ears were represented using the KEMAR head-related transfer functions (HRTFs) which were measured from the artificial dummy head. To evaluate the usefulness of the proposed listener tracking system, the performance of cross-talk cancellation was evaluated at the estimated listener positions. The performance was evaluated in terms of the channel separation ration (CSR), a -10 dB of CSR was experimentally achieved although the listener positions were more or less deviated. A real-time system was implemented using a floating-point digital signal processor (DSP). It was confirmed that the average errors of the listener direction was 5 degree and the subjects indicated that 80 % of the stimuli was perceived as the correct directions.

A Study on the Feedforward Control Algorithm for Dynamic Positioning System Using Ship Motion Prediction (선체운동 예측을 이용한 Dynamic Positioning System의 피드포워드 제어 알고리즘에 관한 연구)

  • Song, Soon-Seok;Kim, Sang-Hyun;Kim, Hee-Su;Jeon, Ma-Ro
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.129-137
    • /
    • 2016
  • In the present study we verified performance of feed-forward control algorithm using short term prediction of ship motion information by taking advantage of developed numerical simulation model of FPSO motion. Up until now, various studies have been conducted about thrust control and allocation for dynamic positioning systems maintaining positions of ships or marine structures in diverse sea environmental conditions. In the existing studies, however, the dynamic positioning systems consist of only feedback control gains using a motion of vessel derived from environmental loads such as current, wind and wave. This study addresses dynamic positioning systems which have feedforward control gain derived from forecasted value of a motion of vessel occurred by current, wind and wave force. In this study, the future motion of vessel is forecasted via Brown's Exponential Smoothing after calculating the vessel motion via a selected mathematical model, and the control force for maintaining the position and heading angle of a vessel is decided by the feedback controller and the feedforward controller using PID theory and forecasted vessel motion respectively. For the allocation of thrusts, the Lagrange Multiplier Method is exploited. By constructing a simulation code for a dynamic positioning system of FPSO, the performance of feedforward control system which has feedback controller and feedforward controller was assessed. According to the result of this study, in case of using feedforward control system, it shows smaller maximum thrust power than using conventional feedback control system.