• Title/Summary/Keyword: Floating dry dock

Search Result 11, Processing Time 0.023 seconds

Ballasting plan optimization for operation of a 2D floating dry dock

  • Yoon, Kyungho;Kim, Hyo-Jin;Yeo, Seungkyun;Hong, Younghwa;Cha, Jihye;Chung, Hyun
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.521-532
    • /
    • 2020
  • A floating dry dock is an advanced structure that can provide a solution for dry dock space shortages. The critical point in floating dock operation is compensating the deflection caused by a heavy payload by adjusting the water level in the ballast system. An appropriate ballasting plan warrants safe and precise construction on a floating dock. Particularly, in the case of a 2D floating dock, ballasting plan evaluation is crucial due to complex deformation modes. In this paper, we developed a method to calculate the optimal ballasting plan for accurate and precise construction on a 2D floating dock. The finite element method was used for considering the flexibility of the floating dock as well as the construction blocks. Through a gradient-based optimization algorithm, the optimal ballasting plan for the given load condition was calculated in semi-real time (5 min). The present method was successfully used for the actual construction of an offshore structure on the 2D floating dock.

Development of the Deflection Measuring System by Pressure Gage for a Floating Dock (압력게이지를 이용한 부유식 도크의 변형 계측시스템 개발)

  • Kim, Youngbok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.90-95
    • /
    • 2017
  • In case of working for the construction of blocks of any ship in a floating dry dock, there may exist deflection in the pontoon deck of the floating dock due to the ballast loading and the self weight of the ship and the floating dock. This paper is on the development of the measuring system and the GUI program to show the real time variation of the deflections at even-spaced positions by several pressure gages and the calculated inclination of the floating dock. The measured and calculated data produced by this developed system could be used to prepare the protection plan on site like ballast adjustment to ensure the safety of working during the floating dock operation.

A Development of Floating Dock Control Simulator for Skid Launching System (Skid Launching System을 위한 Floating Dock Control Simulator의 개발)

  • Kim, Jee-Hun;Lee, Jang-Yong;Park, Sok-Chu
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Since the shipbuilding industry is at its peak to assimilate the large volume of orders in recent years, the Floating Dock has been an alternative to the dry dock which takes a certain period of time to build. Hence the use of Floating Dock is steadily increasing. Since the Skid Launching System(SLS) is used in Floating Dock, the balancing of the ship while launching is important and achieved by adjusting the Ballast tank of the Floating Dock. In this paper a Floating Dock Control Simulator for SLS is developed through the on-line interface of VRC(Valve Remote Control), Tank Level & Draft Measuring System and Valve Control algorithm on Simulation Tank Plan.

A Development of Floating Dock Controller for Skid Launching System (Skid Launching System을 위한 Floating Dock Controller의 개발)

  • Kim, Jee-Hun;Lee, Jang-Yong;Park, Sok-Chu
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.375-380
    • /
    • 2009
  • The authors had consisted the construction of shipyard must be investigated under the consideration of long term ship's demand and so the Floating Dock might be an alternative to the dry dock. This paper shows a development of Floating Dock Controller for Skid Launching System(SLS). While loading out a block to the Floating Dock and launching ship from the Floating Dock, the balancing of the ship and the dock is very important and achieved by adjusting the Ballast tank of the Floating Dock In this paper a Floating Dock Controller for SLS was developed through the on-line interface of VRC(Valve Remote Control), Tank Level & Draft Measuring System and Valve Control algorithm on Tank Plan. The control system developed was applied to a shipbuilding and verified good and stable.

Design of quay mooring rope of Floating Dock against Typoon (태풍 시 플로팅도크 안벽 계류 로프 설계)

  • Kim, Ho-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.569-574
    • /
    • 2020
  • A floating dock is the main facility for launching ships. In the early 2000s, ship-launching technology using floating docks was developed in Korea. Therefore, the opportunity to participate in new construction projects without investment in dry docks has expanded. In this paper, a basic calculation for the safe mooring of a floating dock was performed, and a mooring system was designed based on this. This study was conducted considering the typhoon situation, which is the most serious environmental requirements of Daebul Pier, a site to be installed and operated, for a floating dock. The design load was calculated by wind load, tidal load, and wave-induced load in accordance with the internationally accepted standards. After performing the initial arrangement of the mooring line of the floating dock using the existing mooring facilities of Daebul Pier, the minimum breaking load for each mooring line was calculated for the given load. Based on the calculation, the mooring arrangement was modified to minimize the breaking load, and a final specification of each mooring line was selected.

Model Test and Numerical Simulation of the Behaviour of Dock-Gate in Waves (모형시험을 통한 플로팅 도크게이트 운동성능 평가)

  • Shin, Hyun-Kyoung;Kim, Min-Sung;Noh, Cheol-Min;Yang, Seung-Ho;Cho, Jin-Woog;Kim, Joung-Wook;Kim, Sam-Ryong;Yang, Young-Chul;Kim, Bong-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.611-619
    • /
    • 2008
  • In most shipyards Floating Dock-gate System is adapted for dry docks. For the safe launching of ships in dry docks, smooth operation of dock-gate must be guaranteed. So it is very important to grasp its behavior in waves for securing the high productivity and the safety of workers. Its seakeeping ability was estimated numerically at the floating conditions and the free roll decay and the seakeeping model tests of dock-gate was carried out with bilge-keels of 3 different widths which have a scale of 1 to 20. More than 20% decrease of roll motion was observed in irregular beam seas by applying a bilge-keel system to the dock-gate that is long and narrow.

Spatial Scheduling for Mega-block Assembly Yard in Shipbuilding Company (조선소의 메가블록 조립작업장을 위한 공간계획알고리즘 개발)

  • Koh, Shie-Gheun;Jang, Jeong-Hee;Choi, Dae-Won;Woo, Sang-Bok
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.78-86
    • /
    • 2011
  • To mitigate space restriction and to raise productivity, some shipbuilding companies use floating-docks on the sea instead of dry-docks on the land. In that case, a floating-crane that can lift very heavy objects (up to 3,600 tons) is used to handle the blocks which are the basic units in shipbuilding processes, and so, very large blocks (these are called the mega-blocks) can be used to build a ship. But, because these mega-blocks can be made only in the area near the floating-dock and beside the sea, the space is very important resource for the process. Therefore, our problem is to make an efficient spatial schedule for the mega-block assembly yard. First of all, we formulate this situation into a mathematical model and find optimal solution for a small problem using a commercial optimization software. But, the software could not give optimal solutions for practical sized problems in a reasonable time, and so we propose a GA-based heuristic algorithm. Through a numerical experiment, finally, we show that the spatial scheduling algorithm can provide a very good performance.

A Study on Docking Analysis for Conventional LNGC (Conventional LNGC의 도킹 해석에 관한 연구)

  • Choi, Joong-Hyo;Park, Jae-Hyung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.10-15
    • /
    • 2008
  • The proper docking block arrangement, loading condition and structural reinforcement are required to ensure structural safety of ship, when she is in re-docking and launching for inspection or repair. The large reaction force due to narrow bottom tangent area, heavy weight and ballast loading are occurred at aft body and fore body of ship. Especially, in case of LNGC, the strength evaluation is necessary for cargo hold areas including mid-body because tank hydro test is performed in dry-dock. The analysis results and experiences to confirm structural safety for docking of conventional LNGC$(138K{\sim}151.7K)$ are introduced in this paper.

  • PDF

Introduction to a CAE Development Based on Simplified Grillage Model for Ship Docking Analysis (선박 도킹 시 간이화된 격자 모델을 사용한 효과적인 CAE 시스템 개발 사례)

  • Kim, Seong-Chan;Yu, Cheol-Ho;Lee, Jang-Hyeon;Lee, Gyeong-Seok
    • Computational Structural Engineering
    • /
    • v.22 no.4
    • /
    • pp.89-94
    • /
    • 2009
  • 최근에 선박의 도킹해석은 3차원 전선 구조 해석을 통해 수행되어 왔으나 도킹해석 모델을 구성하는데 많은 시간과 노력이 필요하였다. 전선구조해석 모벨을 만들기 위해 필요한 선박구조 도면이 완성되기 전인 초기 설계단계에서 도킹시 반목배치를 조기에 확정하고, 구조 안정성을 확보하기 위한 노력이 요구되어 왔기 때문에 간이화된 도킹 해석 프로그램을 개발하게 되었다. 2차원 격자구조를 이용한 도킹해석기법을 통해 얻은 반목에서의 지지력이 3차원 전선해석모델을 사용하여 얻은 반목에서의 반력 결과와 비교해 타당한 결과를 보여 주고 있음을 확인하였다. 간이화된 도킹용 해석 프로그램을 개발하였으며, 다음과 같은 기능을 갖추어 사용자가 쉽게 격자 구조 모델을 생생하고 해석을 수행할 수 있도록 구성하였다. 향후 각 요소의 단면 특성치를 자동으로 산정하는 기능이 추가되어야 한다. 그리고 부유식 도크(Floating dock)에서의 도킹해석은 본 개발의 대상이 된 건식 도크(Dry dock)에서의 경우와 다른 고려사항이 추가되어야 하기 때문에 향후 추가적인 연구와 개발을 통해 새로운 기능으로 포함될 것이다.

Development of float off Operation Design for Mdlti Semi-submersible Barges with Symmetrical Stability Casings (반 잠수식 복수부선의 진수설계)

  • 양영태;최문길;이춘보;박병남;성석부
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.72-76
    • /
    • 2003
  • This paper presents the design concept and operation results of float-off for FSO (340,000 DWT Class, ELF AMENAM KPONO Project) built on the ground, without dry dock facilities. It was the first attempt to build FSO, completely, on the ground and launch it using DBU (Double Barge Unit, which was connected by rigid frame structure.) The major characteristics of FSO, which are similar to general VLCC type hull, including topside structure, weigh 51,000 metric ton. In order to have sufficient stability during the deck immersion of DBU, while passing through a minimum water plane area zone, proper trim control was completed with LMC (Load Master Computer). The major features of the monitoring system include calculation for transverse bending moment, shear force, local strength check of each connector, based on component stress, and deformation check during the load-out and float-off. Another major concern during the operation was to avoid damages at the bottom and sides of FSO, due to motion & movement after free-floating; therefore, adequate clearances between DBU and FSO were to be provided, and guide posts were installed to prevent side damage of the DBU casings. This paper also presents various measures that indecate the connector bending moment, damage stability analysis, and mooring of DBU during float off.