• Title/Summary/Keyword: Floating Flexible Body

Search Result 26, Processing Time 0.018 seconds

Submerged Floating Wave Barrier

  • Kee S.T.;Park W.S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.85-89
    • /
    • 2004
  • The wave interactions with fully submerged and floating dual buoy/vertical porous membrane breakwaters has been investigated in experimentally to validate the developed theory and numerical method in the previous study, in which multi-domain hydro-elastic formulation was carried out in the context of linear wave-body interaction theory and Darcy's law. It is found that the experimental results agrees well with the numerical prediction. Transmission and reflection can be quite reduced simultaneously especially in the region of long waves. The properly tuned system to incoming waves can effectively dissipate wave energy and also offset each other between incident and scattered waves using its hydro-elasticity and geometry.

  • PDF

A Study on Structural Characteristics and Objective Hand of Knit Fabrics -A Focus on Intarsia and Color Jacquard- (니트 소재의 조직특성과 객관적 태에 관한 연구 -인타샤와 칼라자카드를 중심으로-)

  • Lim, Gee-Jung;Lee, Mee-Sik
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.8
    • /
    • pp.968-981
    • /
    • 2011
  • This study examines the effect of the structure of Intarsia and Jacquard knit on mechanical properties of knit fabrics to suggest data for knit design. Intarsia and 7 types of Color Jacquard (Floating Jacquard, Normal Jacquard, Bird's eye Jacquard, Tubular Jacquard, Ladder's back Jacquard, Blister Jacquard, and Transfer Jacquard) were used. The samples with a gauge of 14 were knitted using 100% wool 2/48's yarn by Shima Seiki SIG computer knitting machine. The Objective Hand was measured by KES-FB system and HV and THV were calculated by the formula of KN-402-KT and KN-301-winter respectively. The results showed that Intarsia and Floating Jacquard are thin, flexible and light, Bird's eye Jacquard is slick, flat and slim, Tubular Jacquard is stiff and undrapable, Ladder's back Jacquard is difficult in shearing deformation and relatively bulky, Blister Jacquard is thickest and transfer jacquard is uneven in surface contour. The selection of proper structure is important for the knit apparel production since the thickness and weight of knit determine the amount of yarn needed and consequently the production cost. The hands of Ladder's back Jacquard and Tubular Jacquard are superior to those of other structures. Intarsia and Floating Jacquard which are thin, light and flexible seem to be good structures for designs showing a body silhouette whereas, Bird's eye Jacquard, Tubular Jacquard and Blister Jacquard (which are thick, heavy, and stiff) are suitable for a boxy silhouette.

Characterization of the effect of joint clearance on the energy loss of flexible multibody systems with variable kinematic structure

  • Ebrahimi, Saeed;Salahshoor, Esmaeil;Moradi, Shapour
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.691-702
    • /
    • 2017
  • Clearances are essential for the assemblage of mechanisms to allow the relative motion between the joined bodies. This clearance exists due to machining tolerances, wear, material deformations, and imperfections, and it can worsen the mechanism performance when the precision and smoothly-working are intended. Energy is a subject which is less paid attention in the area of clearance. The effect of the clearance on the energy of a flexible slider-crank mechanism is investigated in this paper. A clearance exists in the joint between the slider and the coupler. The contact force model is based on the Lankarani and Nikravesh model and the friction force is calculated using the modified Coulomb's friction law. The hysteresis damping which has been included in the contact force model dissipates energy in clearance joints. The other source for the energy loss is the friction between the journal and the bearing. Initial configuration and crank angular velocity are changed to see their effects on the energy of the system. Energy diagrams are plotted for different coefficients of friction to see its influence. Finally, considering the coupler as a flexible body, the effect of flexibility on the energy of the system is investigated.

Hydroelastic analysis of a truss pontoon Mobile Offshore Base

  • Somansundar, S.;Selvam, R. Panneer;Karmakar, D.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.423-448
    • /
    • 2019
  • Very Large Floating Structures (VLFS) are one among the solution to pursue an environmentally friendly and sustainable technology in birthing land from the sea. VLFS are extra-large in size and mostly extra-long in span. VLFS may be classified into two broad categories, namely the pontoon type and semi-submersible type. The pontoon-type VLFS is a flat box structure floating on the sea surface and suitable in regions with lower sea state. The semi-submersible VLFS has a deck raised above the sea level and supported by columns which are connected to submerged pontoons and are subjected to less wave forces. These structures are very flexible compared to other kinds of offshore structures, and its elastic deformations are more important than their rigid body motions. This paper presents hydroelastic analysis carried out on an innovative VLFS called truss pontoon Mobile Offshore Base (MOB) platform concept proposed by Srinivasan and Sundaravadivelu (2013). The truss pontoon MOB is modelled and hydroelastic analysis is carried out using HYDRAN-XR* for regular 0° waves heading angle. Results are presented for variation of added mass and damping coefficients, diffraction and wave excitation forces, RAOs for translational, rotation and deformational modes and vertical displacement at salient sections with respect to wave periods.

THE SIMPLICATION OF DYNAMICS FOR THE FLEXIBLE BODY (유연성을 갖는 매니퓰레이터 역학방정식의 간략화)

  • Park, Hwa-Sea;Bae, Jun-Kyung;Nam, Ho-Pub;Park, Chong-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.950-953
    • /
    • 1988
  • The equations of motion for linearly elastic bodies undergoing large displacement motion are derived. This produces a set of equations which are efficient to numerically integrate. The equations for the elastic bodies are formulated and simplified to provide as much efficiency as possible in their numerical solution. A futher efficiency is obtained through the use of floating reference frame. The equation are presented in two forms for numerical integration. 1) Explicit numerical integration 2) Implicit numerical integration. In this paper, there was used the numerical integration. The implicit numerical integration is extended to solved second order equation, futher reducing the numerical effort required. The formulation given is seen to be occulate and is expected to be efficient for many types of problems.

  • PDF

A Study on the Design Methods Utilizing 'Congestion' and 'Void' from Rem Koolhaas's Architecture (렘 콜하스의 건축에서 나타나는 밀집과 보이드를 적용한 디자인 방법에 관한 연구)

  • Park, Sola
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.6
    • /
    • pp.51-59
    • /
    • 2014
  • Rem Koolhaas has pursued new architectural approaches breaking with conventional ones. Around the 1990s when large-scale projects occurred with the union of Europe ahead, Koolhaas recognized the limits to the existing methods for responding to such changes. Accordingly, he came to use design methods based on 'congestion' and 'void' as strategical alternatives, which became the moment for him to leap forward from the previous working sphere based in Europe to becoming an architect who would be commissioned a number of large-scale global projects. Therefore, this study intends to investigate his design methods which utilized congestion and void, and to derive spatial characteristics from the projects based on such methods. First of all, the study looked into the historical background, definition and process of congestion and the void as design methods, and analyzed his projects to which such methods were applied by classifying them into the following categories: 1) the void that removes a space of singularity; 2) the void that penetrates space while making a flow; and 3) the void that is formed by vertical extrusion. Then, the characteristics of architectural spaces made in this way were identified as 1)the single-body appearance made by congestion and the following types of space made by the void: 2) the non-uniformly shaped space that looks like floating; 3) the flexible space with various flows and directions; and 4) the space with virtual possibilities that embrace contingent events. This understanding of Rem Koolhaas's design methods which were attempted in various ways at his critical turning point will be the foundation to understand the overall world of his works.